CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4173-4186.DOI: 10.11949/0438-1157.20220689
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jianing LIU(), Jiahao MA, Junying ZHANG(), Jue CHENG()
Received:
2022-05-13
Revised:
2022-06-20
Online:
2022-10-09
Published:
2022-09-05
Contact:
Junying ZHANG, Jue CHENG
通讯作者:
张军营,程珏
作者简介:
刘佳宁(1996—),女,硕士研究生,Jianing_liu96@163.com
CLC Number:
Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network[J]. CIESC Journal, 2022, 73(9): 4173-4186.
刘佳宁, 马嘉浩, 张军营, 程珏. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186.
Sample | racrylate | SH4/% | Epoxy/% | Acrylate/% |
---|---|---|---|---|
S4BOB-A00 | 0 | 47.80 | 52.20 | 0 |
S4BOB-A02 | 0.2 | 48.07 | 42.00 | 9.93 |
S4BOB-A04 | 0.4 | 48.35 | 31.68 | 19.97 |
S4BOB-A06 | 0.6 | 48.63 | 21.24 | 25.03 |
S4BOB-A08 | 0.8 | 48.91 | 10.68 | 30.13 |
S4BOF-A00 | 0 | 47.61 | 52.39 | 40.41 |
S4BOF-A02 | 0.2 | 47.92 | 42.19 | 0 |
S4BOF-A04 | 0.4 | 48.23 | 31.85 | 9.90 |
S4BOF-A06 | 0.6 | 48.55 | 21.37 | 19.92 |
S4BOF-A08 | 0.8 | 48.87 | 10.76 | 30.08 |
S4A10 | 1 | 49.20 | 0 | 40.37 |
Table 1 Formulations of thiol-acrylate-epoxy 3D networks
Sample | racrylate | SH4/% | Epoxy/% | Acrylate/% |
---|---|---|---|---|
S4BOB-A00 | 0 | 47.80 | 52.20 | 0 |
S4BOB-A02 | 0.2 | 48.07 | 42.00 | 9.93 |
S4BOB-A04 | 0.4 | 48.35 | 31.68 | 19.97 |
S4BOB-A06 | 0.6 | 48.63 | 21.24 | 25.03 |
S4BOB-A08 | 0.8 | 48.91 | 10.68 | 30.13 |
S4BOF-A00 | 0 | 47.61 | 52.39 | 40.41 |
S4BOF-A02 | 0.2 | 47.92 | 42.19 | 0 |
S4BOF-A04 | 0.4 | 48.23 | 31.85 | 9.90 |
S4BOF-A06 | 0.6 | 48.55 | 21.37 | 19.92 |
S4BOF-A08 | 0.8 | 48.87 | 10.76 | 30.08 |
S4A10 | 1 | 49.20 | 0 | 40.37 |
Sample | racrylate | G'/Pa | G"/Pa | Gel point/min |
---|---|---|---|---|
S4BOB-A02 | 0.2 | 1.40×10-3 | 3.00 | >150.0 |
S4BOB-A04 | 0.4 | 2.21×105 | 7.19×102 | 25.5 |
S4BOB-A06 | 0.6 | 1.18×106 | 6.68×103 | 16.0 |
S4BOB-A08 | 0.8 | 1.76×106 | 1.99×104 | 13.0 |
S4BOF-A02 | 0.2 | 2.94×10-4 | 6.00 | >150.0 |
S4BOF-A04 | 0.4 | 6.10×104 | 9.81×103 | 29.0 |
S4BOF-A06 | 0.6 | 7.70×105 | 7.95×103 | 19.0 |
S4BOF-A08 | 0.8 | 1.54×106 | 5.05×104 | 17.0 |
Table 2 Rheological properties of S4BOB and S4BOF systems in the first curing stage
Sample | racrylate | G'/Pa | G"/Pa | Gel point/min |
---|---|---|---|---|
S4BOB-A02 | 0.2 | 1.40×10-3 | 3.00 | >150.0 |
S4BOB-A04 | 0.4 | 2.21×105 | 7.19×102 | 25.5 |
S4BOB-A06 | 0.6 | 1.18×106 | 6.68×103 | 16.0 |
S4BOB-A08 | 0.8 | 1.76×106 | 1.99×104 | 13.0 |
S4BOF-A02 | 0.2 | 2.94×10-4 | 6.00 | >150.0 |
S4BOF-A04 | 0.4 | 6.10×104 | 9.81×103 | 29.0 |
S4BOF-A06 | 0.6 | 7.70×105 | 7.95×103 | 19.0 |
S4BOF-A08 | 0.8 | 1.54×106 | 5.05×104 | 17.0 |
Sample | E′ at | Tensile strength/MPa | Elongation at break/% | Young’s modulus/MPa | |
---|---|---|---|---|---|
S4BOB-A00 | 9.65 | 6.38 | 0.76 | 17.05 | 5.17 |
S4BOB-A02 | 12.45 | 9.29 | 1.39 | 20.04 | 7.53 |
S4BOB-A04 | 13.77 | 10.59 | 4.22 | 44.14 | 14.79 |
S4BOB-A06 | 17.06 | 11.95 | 6.00 | 60.57 | 9.03 |
S4BOB-A08 | 22.16 | 12.29 | 8.00 | 66.26 | 118.55 |
S4BOF-A00 | 10.97 | 10.23 | 3.02 | 44.15 | 8.01 |
S4BOF-A02 | 14.07 | 10.89 | 4.59 | 52.94 | 9.51 |
S4BOF-A04 | 16.44 | 12.28 | 9.82 | 66.25 | 14.77 |
S4BOF-A06 | 15.73 | 12.14 | 11.51 | 106.92 | 8.22 |
S4BOF-A08 | 20.03 | 13.22 | 15.98 | 86.97 | 277.34 |
S4A10 | 44.21 | 18.63 | 14.19 | 12.06 | 722.26 |
Table 3 Thermomechanical properties and mechanical properties of final materials
Sample | E′ at | Tensile strength/MPa | Elongation at break/% | Young’s modulus/MPa | |
---|---|---|---|---|---|
S4BOB-A00 | 9.65 | 6.38 | 0.76 | 17.05 | 5.17 |
S4BOB-A02 | 12.45 | 9.29 | 1.39 | 20.04 | 7.53 |
S4BOB-A04 | 13.77 | 10.59 | 4.22 | 44.14 | 14.79 |
S4BOB-A06 | 17.06 | 11.95 | 6.00 | 60.57 | 9.03 |
S4BOB-A08 | 22.16 | 12.29 | 8.00 | 66.26 | 118.55 |
S4BOF-A00 | 10.97 | 10.23 | 3.02 | 44.15 | 8.01 |
S4BOF-A02 | 14.07 | 10.89 | 4.59 | 52.94 | 9.51 |
S4BOF-A04 | 16.44 | 12.28 | 9.82 | 66.25 | 14.77 |
S4BOF-A06 | 15.73 | 12.14 | 11.51 | 106.92 | 8.22 |
S4BOF-A08 | 20.03 | 13.22 | 15.98 | 86.97 | 277.34 |
S4A10 | 44.21 | 18.63 | 14.19 | 12.06 | 722.26 |
Sample | Shear strength/MPa | |||
---|---|---|---|---|
Aluminum substrate | Glass substrate | |||
int-materials | fin-materials | int-materials | fin-materials | |
S4BOB-A02 | 0.42 | 6.72 | 1.18 | 2.38 |
S4BOF-A08 | 0.33 | 8.26 | 1.68 | 2.75 |
Table 4 Bonding properties of S4BOB and S4BOF systems
Sample | Shear strength/MPa | |||
---|---|---|---|---|
Aluminum substrate | Glass substrate | |||
int-materials | fin-materials | int-materials | fin-materials | |
S4BOB-A02 | 0.42 | 6.72 | 1.18 | 2.38 |
S4BOF-A08 | 0.33 | 8.26 | 1.68 | 2.75 |
1 | Konuray O, Fernández-Francos X, Ramis X, et al. State of the art in dual-curing acrylate systems[J]. Polymers, 2018, 10(2): 178. |
2 | Muñoz B K, Bosque A D, Sánchez M, et al. Epoxy resin systems modified with ionic liquids and ceramic nanoparticles as structural composites for multifunctional applications[J]. Polymer, 2021, 214: 123233. |
3 | Wang X Q, Ma B, Chen S S, et al. Properties of epoxy-resin binders and feasibility of their application in pavement mixtures[J]. Construction and Building Materials, 2021, 295: 123531. |
4 | Karak N. Overview of epoxies and their thermosets[M]//Sustainable Epoxy Thermosets and Nanocomposites. New York: American Chemical Society, 2021: 1-36. |
5 | Raetzke K, Shaikh M Q, Faupel F, et al. Shelf stability of reactive adhesive formulations: a case study for dicyandiamide-cured epoxy systems[J]. International Journal of Adhesion and Adhesives, 2010, 30(2): 105-110. |
6 | Yu J H, Huang X Y, Wang L C, et al. Preparation of hyperbranched aromatic polyamide grafted nanoparticles for thermal properties reinforcement of epoxy composites[J]. Polymer Chemistry, 2011, 2(6): 1380. |
7 | Fan M J, Liu J L, Li X Y, et al. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system[J]. Thermochimica Acta, 2013, 554: 39-47. |
8 | 尹顺禹, 许艺, 岑诺, 等. 软体智能机器人的系统设计与力学建模[J]. 力学进展, 2020, 50(1): 202006. |
Yin S Y, Xu Y, Cen N, et al. System design and mechanical modeling of soft smart robots[J]. Advances in Mechanics, 2020, 50(1): 202006. | |
9 | Nair D P, Cramer N B, Caipa J C, et al. Two-stage reactive polymer network forming systems[J]. Advanced functional materials. 2012, 22(7): 1502-1510. |
10 | Belmonte A, Russo C, Ambrogi V, et al. Epoxy-based shape-memory actuators obtained via dual-curing of off-stoichiometric "thiol-epoxy" mixtures[J]. Polymers, 2017, 9(3): 113. |
11 | Ramis X, Fernández-Francos X, De-La-Flor S, et al. Click-based dual-curing thermosets and their applications[M]//Guo Q P. Thermosets Structure, Properties, and Applications. Amsterdam: Elsevier, 2017: 511-541. |
12 | Konuray A O, Fernández-Francos X, Ramis X. Curing kinetics and characterization of dual-curable thiol-acrylate-epoxy thermosets with latent reactivity[J]. Reactive and Functional Polymers, 2018, 122: 60-67. |
13 | Jin K L, Wilmot N, Heath W H, et al. Phase-separated thiol-epoxy-acrylate hybrid polymer networks with controlled cross-link density synthesized by simultaneous thiol-acrylate and thiol-epoxy click reactions[J]. Macromolecules, 2016, 49(11): 4115-4123. |
14 | 孙鹤. 具有二阶段固化特征形状记忆环氧固化动力学及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
Sun H. Study on curing kinetics and properties of shape memory epoxy resin with two-stage curing characteristic[D]. Harbin: Harbin Institute of Technology, 2014. | |
15 | Santín D, Konuray O, Fernàndez-Francos X, et al. Kinetics analysis and simulation of sequential epoxy dual-curing systems with independent thermal activation[J]. Thermochimica Acta, 2019, 673: 158-168. |
16 | Belmonte A, Fernàndez-Francos X, Serra A . et al. Phenomenological characterization of sequential dual-curing of off-stoichiometric "thiol-epoxy" systems: towards applicability[J]. Materials & Design, 2017, 113: 116-127. |
17 | Russo C, Serra A, Fernández-Francos X, et al. Characterization of sequential dual-curing of thiol-acrylate-epoxy systems with controlled thermal properties[J]. European Polymer Journal, 2019, 112: 376-388. |
18 | Fernàndez-Francos X, Konuray A O, Belmonte A, et al. Sequential curing of off-stoichiometric thiol-epoxy thermosets with a custom-tailored structure[J]. Polymer Chemistry, 2016, 7: 2280-2290. |
19 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 增塑剂环氧值的测定: [S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determinating the epoxy value of plasticizers: [S]. Beijing: Standards Press of China, 2009. | |
20 | Hu F S, La Scala J J, Sadler J M, et al. Synthesis and characterization of thermosetting furan-based epoxy systems[J]. Macromolecules, 2014, 47(10): 3332-3342. |
21 | Hoyle C E, Lowe A B, Bowman C N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis[J]. Chemical Society Reviews, 2010, 39(4): 1355-1387. |
22 | Rozenberg B A. Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines[J]. Advances in Polymer Science, 1986, 75: 113-165. |
23 | Fernàndez-Francos X. Theoretical modeling of the effect of proton donors and regeneration reactions in the network build-up of epoxy thermosets using tertiary amines as initiators[J]. European Polymer Journal, 2014, 55: 35-47. |
24 | Jin K L, Heath W H, Torkelson J M. Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: effects of catalysis and functionality[J]. Polymer, 2015, 81: 70-78. |
25 | Carioscia J A, Stansbury J W, Bowman C N. Evaluation and control of thiol-ene/thiol-epoxy hybrid networks[J]. Polymer, 2007, 48(6): 1526-1532. |
26 | Konuray A O, Fernández-Francos X, Ramis X. Analysis of the reaction mechanism of the thiol-epoxy addition initiated by nucleophilic tertiary amines[J]. Polymer Chemistry, 2017, 8(38): 5934-5947. |
27 | 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016: 41-42. |
Weng S F, Xu Y Z. Fourier Transform Infrared Spectroscopy Analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016: 41-42. | |
28 | Shen X B, Liu X Q, Dai J Y, et al. How does the hydrogen bonding interaction influence the properties of furan-based epoxy resins[J]. Industrial & Engineering Chemistry Research, 2017, 56(38): 10929-10938. |
29 | Li W Y, Ma J H, Wu S N, et al. The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: molecular dynamics simulation study[J]. Polymer Testing, 2021, 101: 107275. |
30 | Russo C, Fernández-Francos X, de la Flor S. Rheological and mechanical characterization of dual-curing thiol-acrylate-epoxy thermosets for advanced applications[J]. Polymers, 2019, 11(6): 997. |
[1] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[2] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[3] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[6] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[7] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[8] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[9] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[10] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[11] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
[12] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[13] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[14] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[15] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 635
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||