CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4229-4240.DOI: 10.11949/0438-1157.20230716
• Process system engineering • Previous Articles Next Articles
Qingmei DANG1(), Qiang LI2(), Huidian DING2, Shengkun JIA3, Xing QIAN1(), Yang YUAN1, Kejin HUANG1, Haisheng CHEN1
Received:
2023-07-10
Revised:
2023-09-10
Online:
2023-12-22
Published:
2023-10-25
Contact:
Qiang LI, Xing QIAN
党青梅1(), 李强2(), 丁晖殿2, 贾胜坤3, 钱行1(), 苑杨1, 黄克谨1, 陈海胜1
通讯作者:
李强,钱行
作者简介:
党青梅(1999—),女,硕士研究生,2021210499@buct.edu.cn基金资助:
CLC Number:
Qingmei DANG, Qiang LI, Huidian DING, Shengkun JIA, Xing QIAN, Yang YUAN, Kejin HUANG, Haisheng CHEN. Reconstruction and prediction of distillation or absorption state variables under off-design conditions based on dynamic mode decomposition[J]. CIESC Journal, 2023, 74(10): 4229-4240.
党青梅, 李强, 丁晖殿, 贾胜坤, 钱行, 苑杨, 黄克谨, 陈海胜. 基于动态模式分解的精馏吸收状态变量非设计条件下的重构与预测[J]. 化工学报, 2023, 74(10): 4229-4240.
Add to citation manager EndNote|Ris|BibTeX
状态变量 | 平均相对误差 | ||||
---|---|---|---|---|---|
振幅减小10% | 偏差减小10 | 振幅随机变化 | 添加噪声 | 输入随机变化 | |
X(7) |
Table 1 Average relative error values of approximate linearized model predictions for different cases
状态变量 | 平均相对误差 | ||||
---|---|---|---|---|---|
振幅减小10% | 偏差减小10 | 振幅随机变化 | 添加噪声 | 输入随机变化 | |
X(7) |
控制器 | 被控变量 | 操纵变量 | 增益 | 积分时间/min |
---|---|---|---|---|
TC1 | T15 | L | 12.720 | 5.190 |
TC2 | T29 | S1 | 6.280 | 10.920 |
Table 2 Controller tuning parameters of PI for the binary distillation column
控制器 | 被控变量 | 操纵变量 | 增益 | 积分时间/min |
---|---|---|---|---|
TC1 | T15 | L | 12.720 | 5.190 |
TC2 | T29 | S1 | 6.280 | 10.920 |
状态变量 | 浓度校正相对误差平均值 | 温度校正相对误差平均值 |
---|---|---|
X(109) | ||
X(137) |
Table 3 Average relative errors of reconstruction and prediction of the approximate linearized model
状态变量 | 浓度校正相对误差平均值 | 温度校正相对误差平均值 |
---|---|---|
X(109) | ||
X(137) |
状态 变量 | 平均相对误差 | |||
---|---|---|---|---|
振幅减小10% | 偏差减小1% | 振幅随机 变化 | 输入随机 变化 | |
X(109) | ||||
X(137) |
Table 4 Average relative error values of approximate linearized model predictions for different cases
状态 变量 | 平均相对误差 | |||
---|---|---|---|---|
振幅减小10% | 偏差减小1% | 振幅随机 变化 | 输入随机 变化 | |
X(109) | ||||
X(137) |
1 | Sangal V K, Kumar V, Mishra I M. Optimization of structural and operational variables for the energy efficiency of a divided wall distillation column[J]. Computers & Chemical Engineering, 2012, 40: 33-40. |
2 | 张莘, 高伟, 齐鸣, 等. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(S1): 1-9. |
Zhang S, Gao W, Qi M, et al. A review of optimization rectification systems based on multi-objective[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 1-9. | |
3 | Skogestad S. The dos and don'ts of distillation column control[J]. Chemical Engineering Research and Design, 2007, 85(1): 13-23. |
4 | Taqvi S A, Tufa L D, Zabiri H, et al. Fault detection in distillation column using NARX neural network[J]. Neural Computing and Applications, 2020, 32(8): 3503-3519. |
5 | Feng Z M, Shen W F, Rangaiah G P, et al. Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate[J]. Separation and Purification Technology, 2020, 240: 116655. |
6 | Yan W W, Tang D, Lin Y J. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4237-4245. |
7 | Sato C, Ohtani T, Nishitani H. Modeling, simulation and nonlinear control of a gas-phase polymerization process[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 945-951. |
8 | 李德新, 姜波, 任奕丞, 等. 基于集合算法的高纯度精馏塔分段建模方法[J]. 化工学报, 2012, 63(9): 2710-2715. |
Li D X, Jiang B, Ren Y C, et al. Aggregated model high purity distillation column based on group methods[J]. CIESC Journal, 2012, 63(9): 2710-2715. | |
9 | 刘星伟, 贾胜坤, 罗祎青, 等. 基于信赖域算法的精馏塔优化[J]. 化工学报, 2022, 73(5): 2031-2038. |
Liu X W, Jia S K, Luo Y Q, et al. Optimization of distillation column based on trust region algorithm[J]. CIESC Journal, 2022, 73(5): 2031-2038. | |
10 | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
Liu X, Xu S L, Wang Y F. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation[J]. CIESC Journal, 2022, 73(10): 4518-4526. | |
11 | Su Y, Jin S M, Zhang X P, et al. Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm[J]. Computers & Chemical Engineering, 2020, 132: 106618. |
12 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
13 | Herceg S, Ujević Andrijić Ž, Bolf N. Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models[J]. Chemical Engineering Research and Design, 2019, 149: 95-103. |
14 | Shahana P K, Jaleel A, Priya N. Neural network for identification of heat integrated distillation column[C]//2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR). Malappuram, India: IEEE, 2020: 1-6. |
15 | Li Y, Hu L J, Li N, et al. A light attention-mixed-base deep learning architecture toward process multivariable modeling and knowledge discovery[J]. Computers & Chemical Engineering, 2023, 174: 108259. |
16 | Abdul Jaleel E, Aparna K. Identification of ethane-ethylene distillation column using neural network and ANFIS[C]//2015 Fifth International Conference on Advances in Computing and Communications (ICACC). Kochi, India: IEEE, 2016: 358-361. |
17 | Ping X J, Zhao S Y, Luan X L, et al. Multi-task learning for energy consumption forecasting of methyl chlorosilanes fractional distillation process[J]. Chemometrics and Intelligent Laboratory Systems, 2022, 226: 104596. |
18 | Qian X, Jia S K, Yuan Y, et al. Reconstruction and prediction of state variables in distillation/absorption processes under off-design and limited measurement conditions[J]. Chemical Engineering Science, 2022, 258: 117780. |
19 | Taira K, Brunton S L, Dawson S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. |
20 | Koopman B O. Hamiltonian systems and transformation in Hilbert space[J]. Proceedings of the National Academy of Sciences of the United States of America, 1931, 17(5): 315-318. |
21 | Rowley C W, Mezić I, Bagheri S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. |
22 | Zhang Y M, Jiang L J. A novel data-driven analysis method for nonlinear electromagnetic radiations based on dynamic mode decomposition[C]//2019 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity (EMC+SIPI). New Orleans, LA, USA: IEEE, 2019: 527-531. |
23 | Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1): 249-259. |
24 | Narasingam A, Kwon J S I. Koopman Lyapunov-based model predictive control of nonlinear chemical process systems[J]. AIChE Journal, 2019, 65(11): e16743. |
25 | 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. |
Kou J Q, Zhang W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179. | |
26 | Tissot G, Cordier L, Benard N, et al. Model reduction using dynamic mode decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6/7): 410-416. |
27 | Mao S Y, Ching P C, Lee T. EigenEmo: spectral utterance representation using dynamic mode decomposition for speech emotion classification[EB/OL]. . |
28 | Proctor J L, Eckhoff P A. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition[J]. International Health, 2015, 7(2): 139-145. |
29 | Nayak I, Teixeira F L. Dynamic mode decomposition for prediction of kinetic plasma behavior[C]//2020 International Applied Computational Electromagnetics Society Symposium (ACES). Monterey, CA, USA: IEEE, 2020: 1-2. |
30 | Yuan Y A, Zhou K W, Zhou W W, et al. Flow prediction using dynamic mode decomposition with time-delay embedding based on local measurement[J]. Physics of Fluids, 2021, 33(9): 095109. |
31 | Sunny K, Sheikh A, Wagh S. Dynamic mode decomposition for prediction and enhancement of rotor angle stability[C]//2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). Prague, Czech Republic: IEEE, 2020: 160-165. |
32 | Jiang Y C, Yin S, Li K, et al. Industrial applications of digital twins[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2207): 20200360. |
33 | Kender R, Rößler F, Wunderlich B, et al. Development of control strategies for an air separation unit with a divided wall column using a pressure-driven digital twin[J]. Chemical Engineering and Processing - Process Intensification, 2022, 176: 108893. |
34 | Kutz J N, Brunton S L, Brunton B W, et al. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems[M]. Philadelphia, PA: SIAM, 2016. |
35 | Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. |
36 | Nonomura T, Shibata H, Takaki R. Dynamic mode decomposition using a Kalman filter for parameter estimation[J]. AIP Advances, 2018, 8(10): 105106. |
37 | Qian X, Jia S K, Skogestad S, et al. Control structure selection for four-product Kaibel column[J]. Computers & Chemical Engineering, 2016, 93: 372-381. |
38 | Wang S J, Wong D S H. Controllability and energy efficiency of a high-purity divided wall column[J]. Chemical Engineering Science, 2007, 62(4): 1010-1025. |
39 | Wang J X, Yu N, Chen M Q, et al. Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1087-1101. |
40 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken, NJ: Wiley, 2013. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[8] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[9] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[12] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[13] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[14] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[15] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||