CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 766-775.DOI: 10.11949/0438-1157.20221307
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Mengxin LIANG1(), Yan GUO1, Shidong WANG1, Hongwei ZHANG1, Pei YUAN1,2(), Xiaojun BAO1,2
Received:
2022-09-29
Revised:
2023-01-31
Online:
2023-03-21
Published:
2023-02-05
Contact:
Pei YUAN
梁梦欣1(), 郭艳1, 王世栋1, 张宏伟1, 袁珮1,2(), 鲍晓军1,2
通讯作者:
袁珮
作者简介:
梁梦欣(1997—),女,硕士研究生,2524355119@qq.com
基金资助:
CLC Number:
Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS[J]. CIESC Journal, 2023, 74(2): 766-775.
梁梦欣, 郭艳, 王世栋, 张宏伟, 袁珮, 鲍晓军. 氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J]. 化工学报, 2023, 74(2): 766-775.
Add to citation manager EndNote|Ris|BibTeX
Samples | BET surface area/(m2/g) | Pore volume/(cm3/g) | Pore size/nm |
---|---|---|---|
3DOM g-C3N4 | 21 | 0.03 | 3.7/30 |
Pd/3DOM g-C3N4 | 24 | 0.05 | 3.9/32 |
Table 1 Physiochemical parameters of 3DOM g-C3N4 support and Pd/3DOM g-C3N4 catalyst
Samples | BET surface area/(m2/g) | Pore volume/(cm3/g) | Pore size/nm |
---|---|---|---|
3DOM g-C3N4 | 21 | 0.03 | 3.7/30 |
Pd/3DOM g-C3N4 | 24 | 0.05 | 3.9/32 |
Samples | N/% | C/% | O/% | Pd/% | Binding energy/eV | Graphitic N/% | Pyrrolic N/% | Pyridinic N/% | ||
---|---|---|---|---|---|---|---|---|---|---|
Graphitic N | Pyrrolic N | Pyridinic N | ||||||||
3DOM g-C3N4 | 48.45 | 46.36 | 5.19 | — | 400.80 | 399.71 | 398.26 | 7.19 | 17.95 | 74.85 |
Pd/3DOM g-C3N4 | 48.20 | 44.23 | 7.02 | 0.54 | 400.85 | 399.70 | 398.47 | 8.13 | 19.39 | 72.84 |
Table 2 XPS data for 3DOM g-C3N4 and Pd/3DOM g-C3N4 catalyst
Samples | N/% | C/% | O/% | Pd/% | Binding energy/eV | Graphitic N/% | Pyrrolic N/% | Pyridinic N/% | ||
---|---|---|---|---|---|---|---|---|---|---|
Graphitic N | Pyrrolic N | Pyridinic N | ||||||||
3DOM g-C3N4 | 48.45 | 46.36 | 5.19 | — | 400.80 | 399.71 | 398.26 | 7.19 | 17.95 | 74.85 |
Pd/3DOM g-C3N4 | 48.20 | 44.23 | 7.02 | 0.54 | 400.85 | 399.70 | 398.47 | 8.13 | 19.39 | 72.84 |
1 | Wang H, Rempel G L. Aqueous-phase catalytic hydrogenation of unsaturated polymers[J]. Catalysis Today, 2015, 247: 117-123. |
2 | Han K Y, Cao G P, Zuo H R, et al. Hydrogenation of commercial polystyrene on Pd/TiO2 monolithic ceramic foam catalysts: catalytic performance and enhanced internal mass transfer[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 501-517. |
3 | 阴义轩, 成婷婷, 袁珮, 等. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539. |
Yin Y X, Cheng T T, Yuan P, et al. Deactivation and regeneration of heterogeneous catalysts for hydrogenation of nitrile butadiene rubber[J]. CIESC Journal. 2019, 70(7): 2528-2539. | |
4 | Wang S H, Ge B Q, Yin Y X, et al. Solvent effect in heterogeneous catalytic selective hydrogenation of nitrile butadiene rubber: relationship between reaction activity and solvents with density functional theory analysis[J]. ChemCatChem, 2020, 12(2): 663-672. |
5 | Zhang P, Zhang H W, Wang S H, et al. Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation[J]. Journal of Materials Science, 2020, 55(27): 12876-12883. |
6 | Zhu J Q, Birgisson B, Kringos N. Polymer modification of bitumen: advances and challenges[J]. European Polymer Journal, 2014, 54: 18-38. |
7 | 葛冰青, 阴义轩, 王亚溪, 等. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
Ge B Q, Yin Y X, Wang Y X, et al. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber[J]. CIESC Journal. 2021, 72(1): 543-554. | |
8 | Sun H M, Yang J T, Zhang H W, et al. Hierarchical flower-like NiCu/SiO2 bimetallic catalysts with enhanced catalytic activity and stability for petroleum resin hydrogenation[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5432-5442. |
9 | Falk J C. Lithium based coordination catalysts for the hydrogenation of diene and vinylaromatic polymers[J]. Macromolecular Chemistry and Physics, 1972, 160(1): 291-299. |
10 | Wei L, Jiang J Y, Wang Y H, et al. Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221(1/2): 47-50. |
11 | 贺小进, 李伟, 陈建军. 氢化SBS国内外现状及发展趋势[J]. 化工新型材料, 2008, 36(9): 10-15. |
He X J, Li W, Chen J J. The status and development trend of hydrogenated SBS at home and abroad[J]. New Chemical Materials, 2008, 36(9): 10-15. | |
12 | 于付江, 陈建军, 贺小进, 等. 苯甲酸甲酯促进茂金属催化剂催化SBS加氢反应研究[J]. 高分子学报, 2010(11): 1306-1312. |
Yu F J, Chen J J, He X J, et al. Selective catalytic hydrogenation of sbs block copolymer with metallocene catalyst accelerated by methyl benzoate[J]. Acta Polymerica Sinica, 2010(11): 1306-1312. | |
13 | 曾伟, 刘甲, 张德谨, 等. Pd-Au/1cTiO2/SiO2催化剂的制备及其烯烃的环氧化性能[J]. 化工学报, 2020, 71(11): 4999-5006. |
Zeng W, Liu J, Zhang D J, et al. Preparation of catalyst Pd-Au/1cTiO2/SiO2 and epoxidation of olefins[J]. CIESC Journal. 2020, 71(11): 4999-5006. | |
14 | Singha N K, Sivaram S. Homogeneous catalytic hydrogenation of poly(styrene-co-butadiene) using a ruthenium based Wilkinson catalyst[J]. Polymer Bulletin, 1995, 35(1): 121-128. |
15 | 李宇辉. 二氯二茂钛用于丁苯共聚物SBS加氢的研究[J]. 化工管理, 2021(27): 144-145. |
Li Y H. Study on titanocene dichloride used in hydrogenation of SBS copolymer[J]. Chemical Enterprise Management, 2021(27): 144-145. | |
16 | Chen J, Ma L, Cheng T T, et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR[J]. Journal of Materials Science, 2018, 53(21): 15064-15080. |
17 | Ai C J, Gong G B, Zhao X T, et al. Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 250-256. |
18 | Zou R, Li C, Zhang L Q, et al. Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature[J]. Catalysis Communications, 2016, 81: 4-9. |
19 | Luo Z H, Feng M, Lu H, et al. Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1812-1822. |
20 | Feng M, Luo Z H, Chen R Q, et al. Palladium supported on carbon nanotube modified nickel foam as a structured catalyst for polystyrene hydrogenation[J]. Applied Catalysis A: General, 2019, 570: 329-338. |
21 | Liu Q H, Yang J T, Zhang H W, et al. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin[J]. Chinese Journal of Chemical Engineering, 2022, 45: 41-50. |
22 | Wang R, Sun H M, Liang M X. Flower-like nickel phosphide catalyst for petroleum resin hydrogenation with enhanced catalytic activity, hydrodesulfurization ability and stability[J]. Chemical Engineering Science, 2022, 264(12): 118180. |
23 | Ge B Q, Hu Y D, Zhang H W, et al. Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber[J]. Applied Surface Science, 2021, 539(2): 148212. |
24 | Chang J R, Huang S M. Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1220-1227. |
25 | Pan D, Shi G, Zhang T, et al. New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts[J]. Journal of Materials Chemistry A, 2013, 1(34): 9597-9602. |
26 | Chen J, Hu Y D, Cai A F, et al. The mesopore-elimination treatment and silanol-groups recovery for macroporous silica microspheres and its application as an efficient support for polystyrene hydrogenation[J]. Catalysis Communications, 2018, 111: 75-79. |
27 | Lin B, Li J L, Xu B R, et al. Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 243: 94-105. |
28 | Lin B, Yang G D, Yang B L, et al. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 198: 276-285. |
29 | Guo Y, Yang J T, Zhuang J Y, et al. Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst[J]. Applied Catalysis A: General, 2020, 589: 117312. |
30 | Sun J W, Fu Y S, He G Y, et al. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride[J]. Applied Catalysis B: Environmental, 2015, 165: 661-667. |
31 | Zhao R Y, Sun X X, Jin Y R, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride[J]. Journal of Materials Science, 2019, 54(7): 5445-5456. |
32 | Xu X L, Luo J J, Li L P, et al. Unprecedented catalytic performance in amine syntheses via Pd/g-C3N4 catalyst-assisted transfer hydrogenation[J]. Green Chemistry, 2018, 20(9): 2038-2046. |
33 | Cheng T T, Chen J, Cai A F, et al. Synthesis of Pd/SiO2 catalysts in various HCl concentrations for selective NBR hydrogenation: effects of H+ and Cl- concentrations and electrostatic interactions[J]. ACS Omega, 2018, 3(6): 6651-6659. |
34 | 王悦, 蒋权, 尚介坤, 等. 介孔氮化碳材料合成的研究进展[J]. 物理化学学报, 2016, 32(8): 1913-1928. |
Wang Y, Jiang Q, Shang J K, et al. Advances in the synthesis of mesoporous carbon nitride materials[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1913-1928. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[3] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[4] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[5] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[6] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[7] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[8] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[9] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[10] | Feng YE, Gang LI, Xin FU, Xuemei LANG, Yanhong WANG, Shenglong WANG, Jianli ZHANG, Shuanshi FAN. A simulation study on propane dehydrogenation in porous membrane reactors for propylene production [J]. CIESC Journal, 2022, 73(5): 2008-2019. |
[11] | Ke JIN, Chenguang WANG, Longlong MA, Qi ZHANG. Preparation of core-shell nanomaterials and their application in thermocatalytic hydrogenation of CO/CO2 [J]. CIESC Journal, 2022, 73(3): 990-1007. |
[12] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[13] | Hongyun YOU, Jingjun LIN, Kaiyue HUANG, Riyang SHU, Zhipeng TIAN, Chao WANG, Ying CHEN. Mechanism of solvent effect on hydrogenation of lignin-derived phenolic compounds [J]. CIESC Journal, 2022, 73(10): 4498-4506. |
[14] | Zheng WANG, Feng XU, Xionglin LUO. Full-cycle optimization of acetylene conversion distribution for acetylene hydrogenation beds-in-series reactor [J]. CIESC Journal, 2022, 73(10): 4551-4564. |
[15] | Guilin DONG, Zuwei LUO, Yueqiang CAO, Jinghong ZHOU, Wei LI, Xinggui ZHOU. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate [J]. CIESC Journal, 2022, 73(1): 232-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||