CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1260-1274.DOI: 10.11949/0438-1157.20221595
• Energy and environmental engineering • Previous Articles Next Articles
Sheng’an ZHANG(), Guilian LIU()
Received:
2022-12-10
Revised:
2023-01-04
Online:
2023-04-19
Published:
2023-03-05
Contact:
Guilian LIU
通讯作者:
刘桂莲
作者简介:
张生安(1995—),男,博士研究生,shenganzhangi@stu.xjtu.edu.cn
基金资助:
CLC Number:
Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023, 74(3): 1260-1274.
张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
流程 | 参数 | 本模型 | 文献数据 | 相对误差/% |
---|---|---|---|---|
含有回热器再热式SRC[ | 最高温度/℃ | 500 | 500 | N/A |
冷凝温度/℃ | 60.18 | 60.06 | 0.20 | |
高压汽轮机出口温度/℃ | 345.3 | 345.2 | 0.03 | |
最高压力/bar | 80 | 80 | N/A | |
中间压力/bar | 30 | 30 | N/A | |
最低压力/bar | 0.2 | 0.2 | N/A | |
热效率/% | 38.03 | 39.80 | 4.44 | |
含有回热器的ORC[ | 介质质量流率/(kg/s) | 33.424 | 33.424 | N/A |
最高温度/℃ | 100.4 | 100.0 | 0.40 | |
冷凝温度/℃ | 30 | 30 | N/A | |
热流股回热输出温度/℃ | 40 | 40 | N/A | |
最高压力/bar | 12.67 | 12.67 | N/A | |
最低压力/bar | 1.801 | 1.801 | N/A | |
热效率/% | 13.70 | 13.07 | 4.82 |
Table 1 Comparison of simulation results of reheat SRC and ORC with recuperator with literature data
流程 | 参数 | 本模型 | 文献数据 | 相对误差/% |
---|---|---|---|---|
含有回热器再热式SRC[ | 最高温度/℃ | 500 | 500 | N/A |
冷凝温度/℃ | 60.18 | 60.06 | 0.20 | |
高压汽轮机出口温度/℃ | 345.3 | 345.2 | 0.03 | |
最高压力/bar | 80 | 80 | N/A | |
中间压力/bar | 30 | 30 | N/A | |
最低压力/bar | 0.2 | 0.2 | N/A | |
热效率/% | 38.03 | 39.80 | 4.44 | |
含有回热器的ORC[ | 介质质量流率/(kg/s) | 33.424 | 33.424 | N/A |
最高温度/℃ | 100.4 | 100.0 | 0.40 | |
冷凝温度/℃ | 30 | 30 | N/A | |
热流股回热输出温度/℃ | 40 | 40 | N/A | |
最高压力/bar | 12.67 | 12.67 | N/A | |
最低压力/bar | 1.801 | 1.801 | N/A | |
热效率/% | 13.70 | 13.07 | 4.82 |
Fig.4 Comparison of data predicated by the PEM electrolyzer model and experimental data (a) and comparison of heat demanded by water splitting and that generated by overpotentials (b)
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
直射太阳光辐照量, DNI | 995.3 W/m2 | 高压蒸汽轮机进口温度 | 525℃ |
光学效率, | 0.75 | 高压蒸汽轮机进口压力 | 170 bar |
单个定日镜面积, | 121 m2 | 蒸汽的循环质量流量 | 15.29 kg/s |
中央接收塔发射率, | 0.88 | SRC泵的效率 | 0.80 |
中央接收塔面积, | 60 m2 | SRC汽轮机的效率 | 0.88 |
中央接收塔表面温度, | 1100℃ | ORC循环工质 | R245fa |
充热时间, | 8 h | ORC泵的效率 | 0.80 |
风速,Va | 3 m/s | ORC膨胀机的效率 | 0.85 |
PEM电流密度, | 2000 A/m2 | ORC膨胀机进口温度 | 110℃ |
热盐罐出口温度 | 565℃ | ORC膨胀机进口压力 | 10 bar |
冷盐罐出口温度 | 290℃ | ORC膨胀机出口压力 | 2.17 bar |
储罐数量 | 2 | ORC的质量流率 | 160 kg/s |
Table 2 The basic parameters of the proposed process[20-21,30]
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
直射太阳光辐照量, DNI | 995.3 W/m2 | 高压蒸汽轮机进口温度 | 525℃ |
光学效率, | 0.75 | 高压蒸汽轮机进口压力 | 170 bar |
单个定日镜面积, | 121 m2 | 蒸汽的循环质量流量 | 15.29 kg/s |
中央接收塔发射率, | 0.88 | SRC泵的效率 | 0.80 |
中央接收塔面积, | 60 m2 | SRC汽轮机的效率 | 0.88 |
中央接收塔表面温度, | 1100℃ | ORC循环工质 | R245fa |
充热时间, | 8 h | ORC泵的效率 | 0.80 |
风速,Va | 3 m/s | ORC膨胀机的效率 | 0.85 |
PEM电流密度, | 2000 A/m2 | ORC膨胀机进口温度 | 110℃ |
热盐罐出口温度 | 565℃ | ORC膨胀机进口压力 | 10 bar |
冷盐罐出口温度 | 290℃ | ORC膨胀机出口压力 | 2.17 bar |
储罐数量 | 2 | ORC的质量流率 | 160 kg/s |
参数 | 数值 |
---|---|
产品 | |
电能 | 188.618 MWh/d |
氢气 | 4.834 t/d |
氧气 | 36.366 t/d |
效率和技术经济性结果 | |
能量效率, | 20.52 % |
㶲效率, | 50.67 % |
发电效率, | 37.52 % |
定日镜面数 | 1769 |
中央接收塔高度 | 158 m |
年度化成本 (TAC) | 15.48 MUSD/a |
氢气的平准化成本 (LCOH) | 6.36 USD/kg |
Table 3 Simulation and analysis results of the integrated system
参数 | 数值 |
---|---|
产品 | |
电能 | 188.618 MWh/d |
氢气 | 4.834 t/d |
氧气 | 36.366 t/d |
效率和技术经济性结果 | |
能量效率, | 20.52 % |
㶲效率, | 50.67 % |
发电效率, | 37.52 % |
定日镜面数 | 1769 |
中央接收塔高度 | 158 m |
年度化成本 (TAC) | 15.48 MUSD/a |
氢气的平准化成本 (LCOH) | 6.36 USD/kg |
变量与约束条件 | 取值范围 | 单位 |
---|---|---|
决策变量 | ||
电解水的进料质量流率 | 0.2~0.9 | kg/s |
HPT出口压力 | 30~45 | bar |
PEM电解温度 | 40~90 | ℃ |
PEM的电流密度 | 500~8000 | A/m2 |
ORC的膨胀压力 | 4~15 | bar |
ORC的循环质量流率 | 150~180 | kg/s |
熔盐泵P100出口压力 | 5~10 | bar |
蒸汽轮机等熵效率 | 75~95 | % |
流股8的温度T8 | 36~56 | ℃ |
约束条件 | ||
熔盐泵P100的压头HP100 | HP100>Ht | m |
熔盐流股MS4和MS6的温度 | TMS4≥290,TMS6≥290 | ℃ |
日净输电量 | MWh/d | |
氧气流股8的温度T8 | T8≥T2+10 | ℃ |
Table 4 Decision variables and constraints for multi-objective optimization
变量与约束条件 | 取值范围 | 单位 |
---|---|---|
决策变量 | ||
电解水的进料质量流率 | 0.2~0.9 | kg/s |
HPT出口压力 | 30~45 | bar |
PEM电解温度 | 40~90 | ℃ |
PEM的电流密度 | 500~8000 | A/m2 |
ORC的膨胀压力 | 4~15 | bar |
ORC的循环质量流率 | 150~180 | kg/s |
熔盐泵P100出口压力 | 5~10 | bar |
蒸汽轮机等熵效率 | 75~95 | % |
流股8的温度T8 | 36~56 | ℃ |
约束条件 | ||
熔盐泵P100的压头HP100 | HP100>Ht | m |
熔盐流股MS4和MS6的温度 | TMS4≥290,TMS6≥290 | ℃ |
日净输电量 | MWh/d | |
氧气流股8的温度T8 | T8≥T2+10 | ℃ |
参数 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
决策变量 | ||||||
电解水的进料质量流率/(kg/s) | 0.864 | 0.445 | 0.200 | 0.787 | 0.450 | 0.268 |
HPT出口压力/bar | 38.88 | 32.31 | 33.45 | 42.193 | 42.29 | 41.53 |
PEM电解温度/℃ | 66.55 | 56.03 | 40.50 | 69.46 | 69.27 | 54.67 |
PEM的电流密度/(A/m2) | 4044.50 | 2609.08 | 5953.25 | 4622.80 | 4622.82 | 5026.40 |
ORC的膨胀压力/bar | 7.488 | 13.019 | 10.178 | 14.247 | 14.261 | 14.677 |
ORC的循环质量流率/(kg/s) | 162.97 | 160.32 | 166.77 | 158.54 | 158.47 | 162.87 |
熔盐泵P100出口压力/bar | 8.657 | 9.655 | 8.577 | 8.889 | 8.72 | 8.457 |
HPT等熵效率/% | 92.91 | 92.52 | 91.22 | 95 | 95 | 95 |
LPT等熵效率/% | 95 | 95 | 95 | 90.48 | 95 | 82.54 |
流股8的温度T8/℃ | 51.84 | 48.11 | 38.64 | 47.29 | 47.31 | 48.97 |
目标函数 | ||||||
㶲效率/% | 48.38 | 52.39 | 54.57 | — | — | — |
日净输电量/(MWh/d) | — | — | — | 61.673 | 247.352 | 310.180 |
LCOH/(USD/kg) | 5.08 | 6.19 | 9.65 | 5.09 | 6.05 | 8.49 |
Table 5 The objective functions and operation parameters corresponding points A, B, C, D, E and F
参数 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
决策变量 | ||||||
电解水的进料质量流率/(kg/s) | 0.864 | 0.445 | 0.200 | 0.787 | 0.450 | 0.268 |
HPT出口压力/bar | 38.88 | 32.31 | 33.45 | 42.193 | 42.29 | 41.53 |
PEM电解温度/℃ | 66.55 | 56.03 | 40.50 | 69.46 | 69.27 | 54.67 |
PEM的电流密度/(A/m2) | 4044.50 | 2609.08 | 5953.25 | 4622.80 | 4622.82 | 5026.40 |
ORC的膨胀压力/bar | 7.488 | 13.019 | 10.178 | 14.247 | 14.261 | 14.677 |
ORC的循环质量流率/(kg/s) | 162.97 | 160.32 | 166.77 | 158.54 | 158.47 | 162.87 |
熔盐泵P100出口压力/bar | 8.657 | 9.655 | 8.577 | 8.889 | 8.72 | 8.457 |
HPT等熵效率/% | 92.91 | 92.52 | 91.22 | 95 | 95 | 95 |
LPT等熵效率/% | 95 | 95 | 95 | 90.48 | 95 | 82.54 |
流股8的温度T8/℃ | 51.84 | 48.11 | 38.64 | 47.29 | 47.31 | 48.97 |
目标函数 | ||||||
㶲效率/% | 48.38 | 52.39 | 54.57 | — | — | — |
日净输电量/(MWh/d) | — | — | — | 61.673 | 247.352 | 310.180 |
LCOH/(USD/kg) | 5.08 | 6.19 | 9.65 | 5.09 | 6.05 | 8.49 |
系统 | LCOH/(USD/kg) | 下降(+)/上升(-)比例/% | 文献 |
---|---|---|---|
太阳能驱动超临界CO2布雷顿循环的高温SOEC制氢 | 9.28 | +82.32 | [ |
太阳能驱动氦闭式布雷顿循环发电的PEM制氢 | 7.00 | +37.52 | [ |
太阳能驱动超临界蒸汽朗肯循环发电的Cu-Cl循环制氢 | 7.58 | +48.92 | [ |
太阳能驱动的蒸汽朗肯循环发电的PEM制氢 | 6.00 | +17.88 | [ |
光伏和电池储能系统的碱性电解槽制氢 | 6.55 | +28.68 | [ |
太阳能-燃气轮机与蒸汽轮机混合发电的PEM制氢 | 5.72 | +12.38 | [ |
太阳能-风能-生物乙醇膜反应器耦合制氢 | 4.16 | -18.27 | [ |
光伏-风-蓄电池-蓄热多联产的PEM制氢 | 1.42 | -72.10 | [ |
太阳能-电-氢多联产 | 5.09 | — | 本文 |
Table 6 Comparison between this study and other solar-hydrogen methods
系统 | LCOH/(USD/kg) | 下降(+)/上升(-)比例/% | 文献 |
---|---|---|---|
太阳能驱动超临界CO2布雷顿循环的高温SOEC制氢 | 9.28 | +82.32 | [ |
太阳能驱动氦闭式布雷顿循环发电的PEM制氢 | 7.00 | +37.52 | [ |
太阳能驱动超临界蒸汽朗肯循环发电的Cu-Cl循环制氢 | 7.58 | +48.92 | [ |
太阳能驱动的蒸汽朗肯循环发电的PEM制氢 | 6.00 | +17.88 | [ |
光伏和电池储能系统的碱性电解槽制氢 | 6.55 | +28.68 | [ |
太阳能-燃气轮机与蒸汽轮机混合发电的PEM制氢 | 5.72 | +12.38 | [ |
太阳能-风能-生物乙醇膜反应器耦合制氢 | 4.16 | -18.27 | [ |
光伏-风-蓄电池-蓄热多联产的PEM制氢 | 1.42 | -72.10 | [ |
太阳能-电-氢多联产 | 5.09 | — | 本文 |
1 | 舒新前, 张蕾, 张磊. 煤催化热解制氢技术[M]. 北京: 科学出版社, 2011. |
Shu X Q, Zhang L, Zhang L. Hydrogen Production Technology by Catalytic Pyrolysis of Coal[M]. Beijing: Science Press, 2011. | |
2 | Takeda M, Nara H, Maekawa K, et al. Simulation of liquid level, temperature and pressure inside a 2000 liter liquid hydrogen tank during truck transportation[J]. Physics Procedia, 2015, 67: 208-214. |
3 | Hanley E S, Deane J, Gallachóir B Ó. The role of hydrogen in low carbon energy futures—a review of existing perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3027-3045. |
4 | 李灿. 太阳能转化科学与技术[M]. 北京: 科学出版社, 2020. |
Li C. Solar Energy Conversion Science and Technology[M]. Beijing: Science Press, 2020. | |
5 | 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. |
Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. | |
6 | 邓成刚, 李伟科, 梁展鹏, 等. 太阳光热发电-超临界二氧化碳循环系统经济性分析与优化[J]. 热力发电, 2021, 50(5): 59-66. |
Deng C G, Li W K, Liang Z P, et al. Economic analysis and optimization for concentrated solar power-supercritical carbon dioxide Brayton cycle system[J]. Thermal Power Generation, 2021, 50(5): 59-66. | |
7 | Yang H L, Li J, Wang Q L, et al. Performance investigation of solar tower system using cascade supercritical carbon dioxide Brayton-steam Rankine cycle[J]. Energy Conversion and Management, 2020, 225: 113430. |
8 | Oyedepo S O, Fakeye B A, Mabinuori B, et al. Thermodynamics analysis and performance optimization of a reheat-regenerative steam turbine power plant with feed water heaters[J]. Fuel, 2020, 280: 118577. |
9 | Bauer T, Pfleger N, Breidenbach N, et al. Material aspects of solar salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. |
10 | 苗安康, 袁越, 吴涵, 等. “双碳”目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24. |
Miao A K, Yuan Y, Wu H, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021, 6(4): 15-24. | |
11 | Nafchi F M, Baniasadi E, Afshari E, et al. Performance assessment of a direct steam solar power plant with hydrogen energy storage: an exergoeconomic study[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26023-26037. |
12 | Ghorbani P, Smida K, Razzaghi M M, et al. Modeling and thermoeconomic analysis of a 60 MW combined heat and power cycle via feedwater heating compared to a solar power tower[J]. Sustainable Energy Technologies and Assessments, 2022, 54: 102861. |
13 | Alirahmi S M, Assareh E, Arabkoohsar A, et al. Development and multi-criteria optimization of a solar thermal power plant integrated with PEM electrolyzer and thermoelectric generator[J]. International Journal of Hydrogen Energy, 2022, 47(57): 23919-23934. |
14 | Nafchi F M, Baniasadi E, Afshari E, et al. Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5820-5831. |
15 | Nazerifard R, Khani L, Mohammadpourfard M, et al. Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide[J]. Energy Conversion and Management, 2021, 233: 113922. |
16 | Sadeghi S, Ghandehariun S. Thermodynamic analysis and optimization of an integrated solar thermochemical hydrogen production system[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28426-28436. |
17 | Thanganadar D, Fornarelli F, Camporeale S, et al. Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application[J]. Applied Energy, 2021, 282: 116200. |
18 | 刘鉴民. 太阳能热动力发电技术[M]. 北京: 化学工业出版社, 2012. |
Liu J M. Solar Thermal Power Generation Technology[M]. Beijing: Chemical Industry Press, 2012. | |
19 | Sadeghi S, Ghandehariun S, Rezaie B. Energy and exergy analyses of a solar-based multi-generation energy plant integrated with heat recovery and thermal energy storage systems[J]. Applied Thermal Engineering, 2021, 188: 116629. |
20 | Zhang S A, Li K Y, Zhu P F, et al. An efficient hydrogen production process using solar thermo-electrochemical water-splitting cycle and its techno-economic analyses and multi-objective optimization[J]. Energy Conversion and Management, 2022, 266: 115859. |
21 | Sadeghi S, Ghandehariun S, Naterer G F. Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery[J]. Energy Conversion and Management, 2020, 225: 113441. |
22 | Ni M, Leung M K H, Leung D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion and Management, 2008, 49(10): 2748-2756. |
23 | Vosough A, Keshavarzi S. Parametric study of an ideal Rankine cycle with a reheat[J]. Applied Mechanics and Materials, 2011, 110/111/112/113/114/115/116: 4166-4170. |
24 | Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32(7): 1210-1221. |
25 | Ioroi T, Yasuda K, Siroma Z, et al. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells[J]. Journal of Power Sources, 2002, 112(2): 583-587. |
26 | Tan Z M, Feng X, Yang M B, et al. Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery[J]. Energy, 2022, 260: 125149. |
27 | Zhang D, Hang P, Liu G L. Recycle optimization of an ethylene oxide production process based on the integration of heat exchanger network and reactor[J]. Journal of Cleaner Production, 2020, 275: 122773. |
28 | Jiang N, Han W Q, Guo F Y, et al. A novel heat exchanger network retrofit approach based on performance reassessment[J]. Energy Conversion and Management, 2018, 177: 477-492. |
29 | Zhu P F, Wu Z, Guo L L, et al. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: performance assessment and multi-objective optimization[J]. Energy Conversion and Management, 2021, 240: 114245. |
30 | Badenhorst H. A novel heat exchanger concept for latent heat thermal energy storage in solar power towers: modelling and performance comparison[J]. Solar Energy, 2016, 137: 90-100. |
31 | Chen C, Xia Q, Feng S M, et al. A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage[J]. Energy Conversion and Management, 2021, 237: 114143. |
32 | Hai T, Dhahad H A, Attia E A, et al. Design, modeling and multi-objective techno-economic optimization of an integrated supercritical Brayton cycle with solar power tower for efficient hydrogen production[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102599. |
33 | Sadeghi S, Ghandehariun S. A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: thermodynamic and economic analyses and multi-objective optimization[J]. Energy, 2022, 240: 122723. |
34 | Seyyedi S M, Hashemi-Tilehnoee M, Sharifpur M. Thermoeconomic analysis of a solar-driven hydrogen production system with proton exchange membrane water electrolysis unit[J]. Thermal Science and Engineering Progress, 2022, 30: 101274. |
35 | Niaz H, Lakouraj M M, Liu J. Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: a Korean case study[J]. Korean Journal of Chemical Engineering, 2021, 38(8): 1617-1630. |
36 | Wang G, Wang S K, Cao Y, et al. Design and performance evaluation of a novel hybrid solar-gas power and ORC-based hydrogen-production system[J]. Energy, 2022, 251: 123945. |
37 | Wang B Z, Yu X L, Chang J W, et al. Techno-economic analysis and optimization of a novel hybrid solar-wind-bioethanol hydrogen production system via membrane reactor[J]. Energy Conversion and Management, 2022, 252: 115088. |
38 | Al-Ghussain L, Ahmad A D, Abubaker A M, et al. Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: toward 100% energy independency and green hydrogen production[J]. Energy Reports, 2023, 9: 752-772. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[7] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[8] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[9] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[10] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[11] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[12] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1356
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 985
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||