CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1247-1259.DOI: 10.11949/0438-1157.20221413
• Biochemical engineering and technology • Previous Articles Next Articles
Ruiqi LIU(), Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA()
Received:
2022-10-26
Revised:
2023-01-11
Online:
2023-04-19
Published:
2023-03-05
Contact:
Li MA
通讯作者:
马丽
作者简介:
刘瑞琪(1997—),女,硕士研究生,LIU_ruiqi5@163.com
基金资助:
CLC Number:
Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers[J]. CIESC Journal, 2023, 74(3): 1247-1259.
刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 XPS spectra of the SiO2 NFs and Au@NH2-SiO2 NFs (a); the Au 4f core-level peaks of the Au@NH2-SiO2 NFs (b); wide-angle XRD patterns of the SiO2 NFs and Au@NH2-SiO2 NFs (c); FT-IR spectra of SiO2 NFs, NH2-SiO2 NFs, and Au@NH2-SiO2 NFs (d)
Fig.6 CV curves at a scan rate of 50 mV/s (a) and Nyquist plots (b) of the bare GCE and Au@NH2-SiO2 NFs/GCE; CV responses from the bare GCE, Au@NH2-SiO2 NFs/GCE, and AChE/Au@NH2-SiO2 NFs/GCE at a scan rate of 50 mV/s (c); CV curves of AChE/Au@NH2-SiO2 NFs/GCE at 60—160 mV/s (d); plots of oxidation peak current vs scan rate (e)
Fig.7 The effects of pH of PBS (a), concentration of ATCl (b), amount of Au@NH2-SiO2 NFs (c), and amount of AChE (d) on oxidation peak currents of ATCl
Fig.9 Effect of incubation time on inhibition of AChE/Au@NH2-SiO2 NFs/GCE biosensor after inhibition with malathion (a) and chlopyrifos (b); DPV of AChE/Au@NH2-SiO2 NFs/GCE after inhibition with various concentrations of malathion for 500 s (c) and chlopyrifos for 300 s (d); the relationship between inhibition and concentration of malathion (e) and chlopyrifos (f) malathion concentration (0)—(7): 0, 1.00×10-11, 1.00×10-10, 1.00×10-9, 1.00×10-8, 1.00×10-7, 1.00×10-6, and 1.00×10-5 mol/L (c); chlopyrifos concentration (0)—(7): 0, 1.00×10-13, 1.00×10-12, 1.00×10-11, 1.00×10-10, 1.00×10-9, 1.00×10-8, and 1.00×10-7 mol/L (d)
检测目标 | 电极 | 检测范围/(mol/L) | 检测限/(mol/L) | 文献 |
---|---|---|---|---|
马拉硫磷 | AChE-CS/3DG-CuO NFs/GCE | (4.67×10-12)~(3.00×10-8) | 9.20×10-11 | [ |
poly(FBThF)/Ag-rGO-NH2/AChE/GCE | (3.00×10-10)~(3.00×10-8) | 9.69×10-11 | [ | |
AChE-CS/rGO-TEPA-CuO NWs/GCE | (3.00×10-12)~(6.00×10-8) | 1.20×10-12 | [ | |
AChE/COF@MWCNTs/ GCE | (1.00×10-9)~(1.00×10-5) | 5.00×10-10 | [ | |
AChE/Au@NH2-SiO2 NFs/GCE | (1.00×10-11)~(1.00×10-5) | 2.92×10-12 | 本文 | |
毒死蜱 | AChE/CHIT-SnS2/GCE | (2.00×10-11)~(1.00×10-5) | 2.00×10-11 | [ |
AChE/OMC-CS/ATO-CS/SPCE | (2.85×10-11)~(2.85×10-6) | 2.85×10-11 | [ | |
AChE-CS/GP-AuNP-PEDOT:PSS/SPCE | (1.00×10-10)~(1.00×10-8) | 7.00×10-11 | [ | |
CD-AChE/GO | (7.10×10-9)~(2.85×10-7) | 4.10×10-10 | [ | |
BSA/AChE/GA/CIS/rGO-9/SPCE | (1.42×10-9)~(1.34×10-6) | 6.56×10-11 | [ | |
AChE/Au@NH2-SiO2 NFs/GCE | (1.00×10-13)~(1.00×10-7) | 5.60×10-14 | 本文 |
Table 1 Comparison of the analytical characteristics of the AChE electrochemical biosensors for OPs
检测目标 | 电极 | 检测范围/(mol/L) | 检测限/(mol/L) | 文献 |
---|---|---|---|---|
马拉硫磷 | AChE-CS/3DG-CuO NFs/GCE | (4.67×10-12)~(3.00×10-8) | 9.20×10-11 | [ |
poly(FBThF)/Ag-rGO-NH2/AChE/GCE | (3.00×10-10)~(3.00×10-8) | 9.69×10-11 | [ | |
AChE-CS/rGO-TEPA-CuO NWs/GCE | (3.00×10-12)~(6.00×10-8) | 1.20×10-12 | [ | |
AChE/COF@MWCNTs/ GCE | (1.00×10-9)~(1.00×10-5) | 5.00×10-10 | [ | |
AChE/Au@NH2-SiO2 NFs/GCE | (1.00×10-11)~(1.00×10-5) | 2.92×10-12 | 本文 | |
毒死蜱 | AChE/CHIT-SnS2/GCE | (2.00×10-11)~(1.00×10-5) | 2.00×10-11 | [ |
AChE/OMC-CS/ATO-CS/SPCE | (2.85×10-11)~(2.85×10-6) | 2.85×10-11 | [ | |
AChE-CS/GP-AuNP-PEDOT:PSS/SPCE | (1.00×10-10)~(1.00×10-8) | 7.00×10-11 | [ | |
CD-AChE/GO | (7.10×10-9)~(2.85×10-7) | 4.10×10-10 | [ | |
BSA/AChE/GA/CIS/rGO-9/SPCE | (1.42×10-9)~(1.34×10-6) | 6.56×10-11 | [ | |
AChE/Au@NH2-SiO2 NFs/GCE | (1.00×10-13)~(1.00×10-7) | 5.60×10-14 | 本文 |
Fig.10 Influence of different interfering substances on the amperometric response to ATCl (a); Influence of different interfering substances on oxidation peak current of chlorpyrifos (b); the storage stability of AChE/Au@NH2-SiO2 NFs/GCE (c)
样品编号 | 加入浓度/(mol/L) | 检出浓度/(mol/L) | 回收率/% | 相对标准偏差 (n=3) |
---|---|---|---|---|
1# | 1.0×10-10 | 0.91×10-10 | 90.7 | 2.8 |
2# | 1.0×10-8 | 0.98×10-8 | 98.1 | 3.1 |
3# | 1.0×10-6 | 1.1×10-6 | 107.0 | 4.2 |
Table 2 Detection of chlopyrifos in spiked samples using AChE/Au@NH2-SiO2 NFs/GCE
样品编号 | 加入浓度/(mol/L) | 检出浓度/(mol/L) | 回收率/% | 相对标准偏差 (n=3) |
---|---|---|---|---|
1# | 1.0×10-10 | 0.91×10-10 | 90.7 | 2.8 |
2# | 1.0×10-8 | 0.98×10-8 | 98.1 | 3.1 |
3# | 1.0×10-6 | 1.1×10-6 | 107.0 | 4.2 |
1 | Huang Y Z, Luo X F, Li Z L. Substitution or complementarity: why do rice farmers use a mix of biopesticides and chemical pesticides in China? [J]. Pest Management Science, 2022, 78(4): 1630-1639. |
2 | Chio E H, Li Q X. Pesticide research and development: general discussion and spinosad case[J]. Journal of Agricultural and Food Chemistry, 2022, 70(29): 8913-8919. |
3 | Cao J, Wang M, Yu H, et al. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides[J]. Journal of Agricultural and Food Chemistry, 2020, 68(28): 7298-7315. |
4 | Sette K N, Alugubelly N, Glenn L B, et al. The mechanistic basis for the toxicity difference between juvenile rats and mice following exposure to the agricultural insecticide chlorpyrifos[J]. Toxicology, 2022, 480: 153317. |
5 | Zhu J B, Wang J, Ding Y, et al. A systems-level approach for investigating organophosphorus pesticide toxicity[J]. Ecotoxicology and Environmental Safety, 2018, 149: 26-35. |
6 | Kou J, Li X, Zhang M Y, et al. Accumulative levels, temporal and spatial distribution of common chemical pollutants in the blood of Chinese adults[J]. Environmental Pollution, 2022, 311: 119980. |
7 | Sinha S N, Kumpati R K, Ramavath P N, et al. Investigation of acute organophosphate poisoning in humans based on sociodemographic and role of neurotransmitters with survival study in South India[J]. Scientific Reports, 2022, 12: 16513. |
8 | Alex A V, Deosarkar T, Chandrasekaran N, et al. An ultra-sensitive and selective AChE based colorimetric detection of malathion using silver nanoparticle-graphene oxide (Ag-GO) nanocomposite[J]. Analytica Chimica Acta, 2021, 1142: 73-83. |
9 | Jin R, Xing Z H, Kong D S, et al. Sensitive colorimetric sensor for point-of-care detection of acetylcholinesterase using cobalt oxyhydroxide nanoflakes[J]. Journal of Materials Chemistry. B, 2019, 7(8): 1230-1237. |
10 | Ray S, Biswas R, Banerjee R, et al. A gold nanoparticle-intercalated mesoporous silica-based nanozyme for the selective colorimetric detection of dopamine[J]. Nanoscale Advances, 2019, 2(2): 734-745. |
11 | Lu Q, Lin N, Cheng X M, et al. Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry[J]. Chemosphere, 2022, 300: 134585. |
12 | 毛金竹, 肖淑玲, 杨智淳, 等. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
Mao J Z, Xiao S L, Yang Z C, et al. Application of synthetic biology in pesticides residues detection[J]. CIESC Journal, 2021, 72(5): 2413-2425. | |
13 | 阮云飞. 果蔬中18种有机磷农药残留检测方法的探索与研究[J]. 中国食品, 2021(4): 108-109. |
Ruan Y F. Exploration and study on detection methods of 18 organophosphorus pesticide residues in fruits and vegetables[J]. China Food, 2021(4): 108-109. | |
14 | Hernández F, Pozo O J, Sancho J V, et al. Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities[J]. Journal of Chromatography A, 2006, 1109(2): 242-252. |
15 | Vyas T, Singh V, Kodgire P, et al. Insights in detection and analysis of organophosphates using organophosphorus acid anhydrolases (OPAA) enzyme-based biosensors[J]. Critical Reviews in Biotechnology, 2022, DOI: 10.1080/07388551.2022.2052012 . |
16 | Yang Y J, Wang S Q, Wen H M, et al. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation[J]. Angewandte Chemie (International Ed. in English), 2019, 58(43): 15362-15366. |
17 | Liu C P, Chen K C, Su C F, et al. Revealing the active site of gold nanoparticles for the peroxidase-like activity: the determination of surface accessibility[J]. Catalysts, 2019, 9(6): 517. |
18 | Yang X, Yang M X, Pang B, et al. Gold nanomaterials at work in biomedicine[J]. Chemical Reviews, 2015, 115(19): 10410-10488. |
19 | Gao H X, Cao Y, Chen Y, et al. Au nanoparticle-decorated NiCo2O4 nanoflower with enhanced electrocatalytic activity toward methanol oxidation[J]. Journal of Alloys and Compounds, 2018, 732: 460-469. |
20 | Gu X, Xu Z X, Gu L P, et al. Preparation and antibacterial properties of gold nanoparticles: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 167-187. |
21 | Baek S H, Roh J, Park C Y, et al. Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2020, 107: 110273. |
22 | Zhao L R, Ren X L, Zhang J, et al. Dendritic silica with carbon dots and gold nanoclusters for dual nanozymes[J]. New Journal of Chemistry, 2020, 44(5): 1988-1992. |
23 | Lin Y H, Li Z H, Chen Z W, et al. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis[J]. Biomaterials, 2013, 34(11): 2600-2610. |
24 | Gao J, Kong W X, Zhou L Y, et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization[J]. Chemical Engineering Journal, 2017, 309: 70-79. |
25 | Li Y X, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(9): 3047-3054. |
26 | Sun J F, Xu Z Q, Li W F, et al. Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement[J]. Nanomaterials, 2017, 7(5): 102. |
27 | Sun J Y, Gan T, Zhai R, et al. Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles[J]. Ionics, 2018, 24(8): 2465-2472. |
28 | Fatimah I, Prakoso N I, Sahroni I, et al. Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves[J]. Heliyon, 2019, 5(11): e02766. |
29 | Sun W Z, Yang W Y, Gao S, et al. Elevated N2 selectivity in catalytic denitrification by amino group-assisted in-situ buffering effect of NH2-SiO2 supported PdCu bimetallic nanocatalyst[J]. Chemical Engineering Journal, 2020, 390: 124617. |
30 | Zhang T T, Song Y, Xing Y, et al. The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection[J]. Nanoscale, 2019, 11(42): 20221-20227. |
31 | Wang B, Li Y R, Hu H Y, et al. Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides[J]. PLoS One, 2020, 15(4): e0231981. |
32 | Cheng J Y, Wang X D, Nie T Y, et al. A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids[J]. Analytical and Bioanalytical Chemistry, 2020, 412(11): 2433-2441. |
33 | Zhang Q Q, Xu Q C, Guo Y M, et al. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides[J]. RSC Advances, 2016, 6(29): 24698-24703. |
34 | Fenoy G E, Marmisollé W A, Azzaroni O, et al. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors[J]. Biosensors and Bioelectronics, 2020, 148: 111796. |
35 | Pundir C S, Malik A, Preety. Bio-sensing of organophosphorus pesticides: a review[J]. Biosensors and Bioelectronics, 2019, 140: 111348. |
36 | Sharma K, Kaur M, Rattan G, et al. Effective biocatalyst developed via genipin mediated acetylcholinesterase immobilization on rice straw derived cellulose nanofibers for detection and bioremediation of organophosphorus pesticide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128484. |
37 | Bao J, Huang T, Wang Z N, et al. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides[J]. Sensors and Actuators B: Chemical, 2019, 279: 95-101. |
38 | Zhang P, Sun T T, Rong S Z, et al. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite[J]. Bioelectrochemistry, 2019, 127: 163-170. |
39 | Li S, Qu L M, Wang J F. Acetylcholinesterase based rGO-TEPA-copper nanowires biosensor for detecting malathion[J]. International Journal of Electrochemical Science, 2020, 15: 505-514. |
40 | Wang X, Yang S, Shan J J, et al. Novel electrochemical acetylcholinesterase biosensor based on core-shell covalent organic framework@multi-walled carbon nanotubes (COF@MWCNTs) composite for detection of malathion[J]. International Journal of Electrochemical Science, 2022, 17(5): 220543. |
41 | Liu X K, Sakthivel R, Liu W C, et al. Ultra-highly sensitive organophosphorus biosensor based on chitosan/tin disulfide and British housefly acetylcholinesterase[J]. Food Chemistry, 2020, 324: 126889. |
42 | Hou W J, Zhang Q Q, Dong H W, et al. Acetylcholinesterase biosensor modified with ATO/OMC for detecting organophosphorus pesticides[J]. New Journal of Chemistry, 2019, 43(2): 946-952. |
43 | Theansun W, Sriprachuabwong C, Chuenchom L, et al. Acetylcholinesterase modified inkjet-printed graphene/gold nanoparticle/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) hybrid electrode for ultrasensitive chlorpyrifos detection[J]. Bioelectrochemistry, 2023, 149: 108305. |
44 | Gaviria M I, Barrientos K, Arango J P, et al. Highly sensitive fluorescent biosensor based on acetylcholinesterase and carbon dots-graphene oxide quenching test for analytical and commercial organophosphate pesticide detection[J]. Frontiers in Environmental Science, 2022, 10: 825112. |
45 | Itsoponpan T, Thanachayanont C, Hasin P. Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables[J]. Sensors and Actuators B: Chemical, 2021, 337: 129775. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[13] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[14] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||