CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1360-1369.DOI: 10.11949/0438-1157.20221455

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers

Runzhu LIU(), Tiantian CHU, Xiaoa ZHANG(), Chengzhong WANG, Junying ZHANG()   

  1. Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2022-11-08 Revised:2023-02-06 Online:2023-04-19 Published:2023-03-05
  • Contact: Xiaoa ZHANG, Junying ZHANG

αω-端羟基亚苯基氟硅聚合物的合成及性能

刘润竹(), 储甜甜, 张孝阿(), 王成忠, 张军营()   

  1. 北京化工大学碳纤维及功能高分子教育部重点实验室,材料科学与工程学院,北京 100029
  • 通讯作者: 张孝阿,张军营
  • 作者简介:刘润竹(1997—),女,硕士研究生,1062655630@qq.com
  • 基金资助:
    航天化学动力技术重点实验室开放基金项目(STACPL 120201B07);山东省重大科技创新工程(2019JZZY020232)

Abstract:

A series of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers were synthesized by dehydration polycondensation in the presence of non-equilibrium catalyst from α,ω-hydroxy-terminated poly(methyltrifluoropropyl) siloxanes and phenylene-containing disilanol monomers. The effects of reaction time, catalyst dosage, reactant concentration, and monomer ratio on the appearance, intrinsic viscosity, molecular weight and distribution, and copolymer composition of the obtained polymers were studied. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), rheometer and thermal analysis were utilized to study their chemical structure, room temperature crosslinking reactivity, mechanical property, thermal resistance, and glass transition. The results show that the introduction of phenylene into the main chain not only significantly improves the high temperature resistance of the polymer, but also contributes to the improvement of the crosslinking reaction rate and mechanical properties, and when the phenylene content is lower than 30%(mol), it does not adversely affect the glass transition temperature (Tg) of the polymer. It is reasonable that the insertion of phenylene inhibits the cyclization degradation and simultaneously improves the stiffness of the siloxane chain, which is beneficial to thermal resistance. Besides, the terminal silanol is separated from bulky trifluoropropyl side groups by the insertion of phenylene, and thus their shielding effect is reduced, which is helpful to the crosslinking reactivity. Therefore, the polymers can be utilized to prepare fluorosilicone sealants which show good crosslinking property, physical property, and high and low temperature resistance.

Key words: phenylene, fluorosilicone, polymer, synthesis, catalysis, non-equilibrium catalyst, thermal stability

摘要:

在非平衡催化剂作用下,通过α,ω-端羟基聚甲基三氟丙基硅氧烷和亚苯基二硅醇单体的脱水缩聚反应,制得一系列α,ω-端羟基亚苯基氟硅聚合物,并研究了反应时间、催化剂用量、反应物浓度、单体比例等因素对所得聚合物的状态、特性黏度、分子量及分布、共聚组成的影响。采用红外、核磁、流变仪、热分析等手段对聚合物的结构、室温交联反应性、力学性能、耐高温性能和玻璃化转变进行了研究。结果表明,向主链中引入亚苯基在显著提高聚合物耐高温性能的同时,还有助于交联反应速率和力学性能的改善,并且当亚苯基含量低于30%(mol)时不会对聚合物的玻璃化温度(Tg)产生不利影响。分析原因,亚苯基的插入抑制了有机硅链的成环降解且提高了链的刚性(有利于耐高温性),客观上隔开并降低了大体积三氟丙基侧基对端羟基的屏蔽效应(有利于交联反应性),因而将聚合物制备成氟硅密封胶,具有较好的交联性能、力学性能和耐高低温性能。

关键词: 亚苯基, 氟硅, 聚合物, 合成, 催化, 非平衡催化剂, 热稳定性

CLC Number: