CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1499-1508.DOI: 10.11949/0438-1157.20221332
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Airan ZHOU1,2(), Ping LU1,2, Jianhui XIA2, Dongqin LI2, Jie GUO2, Ming DU1,2, Lichun DONG1()
Received:
2022-10-09
Revised:
2023-02-26
Online:
2023-06-02
Published:
2023-04-05
Contact:
Lichun DONG
周艾然1,2(), 陆平1,2, 夏建辉2, 李冬勤2, 郭杰2, 杜明1,2, 董立春1()
通讯作者:
董立春
作者简介:
周艾然(1984—),男,博士研究生,Zhouairan2018@163.com
基金资助:
CLC Number:
Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide[J]. CIESC Journal, 2023, 74(4): 1499-1508.
周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
项目 | 温度/℃ | 流量/(kg/h) | 压力/kPa |
---|---|---|---|
O2气体 | 1600 | 1200 | 430 |
TiCl4气体 | 450 | 5200 | 435 |
环前冷却水 | 25 | 550 | 230 |
反应器壁面初始温度 | 25 | — | — |
Table 1 Boundary conditions for CFD of the oxidation reactor
项目 | 温度/℃ | 流量/(kg/h) | 压力/kPa |
---|---|---|---|
O2气体 | 1600 | 1200 | 430 |
TiCl4气体 | 450 | 5200 | 435 |
环前冷却水 | 25 | 550 | 230 |
反应器壁面初始温度 | 25 | — | — |
样品位置 | 成分/%(质量分数) | ||||
---|---|---|---|---|---|
Si | Cl | K | Ti | Al | |
底层 | 0.81 | 36.63 | 50.46 | 5.42 | 0.51 |
中层 | 0.59 | 29.13 | 41.15 | 29.13 | — |
表层 | 0.54 | 0.34 | 0.38 | 98.74 | — |
Table 2 EDX results of the scar samples from the pre-ring zone
样品位置 | 成分/%(质量分数) | ||||
---|---|---|---|---|---|
Si | Cl | K | Ti | Al | |
底层 | 0.81 | 36.63 | 50.46 | 5.42 | 0.51 |
中层 | 0.59 | 29.13 | 41.15 | 29.13 | — |
表层 | 0.54 | 0.34 | 0.38 | 98.74 | — |
疤料位置 | 成分/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|
O | Al | Si | Cl | Ni | K | Ti | |
进料环内 | — | 42.46 | 0.00 | 55.58 | 1.96 | — | — |
进料环后 | 0.59 | 29.13 | 0.54 | 0.33 | — | 0.38 | 98.74 |
Table 3 EDX results of scar samples in the feed ring and from the post-ring zone
疤料位置 | 成分/%(质量分数) | ||||||
---|---|---|---|---|---|---|---|
O | Al | Si | Cl | Ni | K | Ti | |
进料环内 | — | 42.46 | 0.00 | 55.58 | 1.96 | — | — |
进料环后 | 0.59 | 29.13 | 0.54 | 0.33 | — | 0.38 | 98.74 |
环缝宽度/mm | TiCl4/O2动量比 |
---|---|
14 | 3.50 |
23 | 2.04 |
32 | 1.47 |
41 | 1.15 |
Table 4 Correlation of momentum ratio and feeding gap width
环缝宽度/mm | TiCl4/O2动量比 |
---|---|
14 | 3.50 |
23 | 2.04 |
32 | 1.47 |
41 | 1.15 |
常温O2流量/(kg/h) | 进料环内壁面温度/℃ | 热氧区内壁面温度/℃ | ||
---|---|---|---|---|
最高 | 最低 | 最高 | 最低 | |
240 | 440 | 242 | 650 | 248 |
120 | 443 | 295 | 720 | 347 |
60 | 445 | 355 | 825 | 475 |
Table 5 Simulation results of wall temperature distribution under different gas flow rates
常温O2流量/(kg/h) | 进料环内壁面温度/℃ | 热氧区内壁面温度/℃ | ||
---|---|---|---|---|
最高 | 最低 | 最高 | 最低 | |
240 | 440 | 242 | 650 | 248 |
120 | 443 | 295 | 720 | 347 |
60 | 445 | 355 | 825 | 475 |
1 | 唐振宁. 钛白粉的生产与环境治理[M]. 北京: 化学工业出版社, 2000. |
Tang Z N. Production and Environmental Treatment of Titanium Dioxide[M]. Beijing: Chemical Industry Press, 2000. | |
2 | 唐文骞, 张锦宝. 硫酸法和氯化法钛白能耗分析与评述[J]. 无机盐工业, 2011, 43(6): 7-9. |
Tang W Q, Zhang J B. Energy consumption analysis and comments of manufacturing titanium dioxide by sulfuric acid process and chloride process[J]. Inorganic Chemicals Industry, 2011, 43(6): 7-9. | |
3 | 江书安, 刘建良, 李雪刚. 中国氯化钛白现状及发展趋势[J]. 有色金属设计, 2016, 43(3): 60-64. |
Jiang S A, Liu J L, Li X G. Current situations and development tendencies of titanium dioxide with chloride process of China[J]. Nonferrous Metals Design, 2016, 43(3): 60-64. | |
4 | 程易, 刘喆, 骆培成, 等. 氯化法钛白氧化反应器气体错流混合[J]. 化工学报, 2006, 57(12): 2840-2846. |
Cheng Y, Liu Z, Luo P C, et al. Gas cross-flow mixing in TiO2 oxidation reactor of chloride process[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(12): 2840-2846. | |
5 | 刘飞生, 谢刚, 于站良, 等. 氯化法生产钛白工艺的研究进展[J]. 材料导报, 2014, 28(15): 113-118. |
Liu F S, Xie G, Yu Z L, et al. Research and development of titania powders by chlorination technology[J]. Materials Review, 2014, 28(15): 113-118. | |
6 | 周峨, 郑少华, 袁章福, 等. 氯化法钛白氧化反应器结构分析与模拟[J]. 钛工业进展, 2004, 21(6): 35-39. |
Zhou E, Zheng S H, Yuan Z F, et al. Structure analysis and modeling on the oxidation reactor in the titanium white synthesis with chloride process[J]. Titanium Industry Progress, 2004, 21(6): 35-39. | |
7 | Jr D W W, Stoddard C K, Rodman H G. Vapor phase production of titanium dioxide pigments: US3560152[P]. 1971-02-02. |
8 | Davis B R, Rahm J A. Process for manufacturing titanium dioxide: US4288418[P]. 1981-09-08. |
9 | Ackim K, Hans S, Hermann T. Means for production titanium dioxide pigment: US3540853[P]. 1970-11-17. |
10 | Portes P J, Mas R J, Richerd J H. Process for producing titanium dioxide by the vapor phase oxidation of titanium tetrachloride: US3499730[P]. 1970-03-10. |
11 | 赵维安. 气相氧化法钛白反应器中物料混合试验[J]. 钢铁钒钛, 1987, 8(4): 25-30. |
Zhao W A. Material mixing test in titanium dioxide reactor by gas phase oxidation[J]. Iron Steel Vanadium Titanium, 1987, 8(4): 25-30. | |
12 | 赵维安. 管式反应器气相初始混合最佳条件的实验研究[J]. 化学工程, 1991, 19(4): 31-36, 3. |
Zhao W A. Experimental study on optimum condition of initial gases mixing in a tubular reactor[J]. Chemical Engineering (China), 1991, 19(4): 31-36, 3. | |
13 | 朱以华, 陈爱平, 李春忠, 等. 化学气相合成TiO2过程中的冷壁凝结机理[J]. 华东理工大学学报, 1999, 25(4): 382-385. |
Zhu Y H, Chen A P, Li C Z, et al. Mechanism of powder deposition on cool wall during the process of chemical synthesis of TiO2 in vapor phase[J]. Journal of East China University of Science and Technology, 1999, 25(4): 382-385. | |
14 | 施利毅, 李春忠, 房鼎业. 气相氧化法制备超细TiO2粒子的研究进展[J]. 材料导报, 1998, 12(6): 23-26. |
Shi L Y, Li C Z, Fang D Y. Research advance in vapor-phase synthesis of ultrafine titania particles[J]. Materials Review, 1998, 12(6): 23-26. | |
15 | Anderson J D, Wu S P, Liu Z M. Computational Fluid Dynamics[M]. Beijing: China Machine Press, 2007. |
16 | 张兵兵, 李俊峰, 柳少军, 等. 氯化法钛白粉氧化反应器降低结疤因素研究[J]. 河南化工, 2014, 31(2): 54-55. |
Zhang B B, Li J F, Liu S J, et al. Study on factors of reducing scar in titanium dioxide oxidation reactor by chlorination method[J]. Henan Chemical Industry, 2014, 31(2): 54-55. | |
17 | 吕滨, 臧颖波, 张树峰, 等. TiCl4气相氧化法制备金红石型TiO2的工艺[J]. 应用化工, 2011, 40(8): 1326-1328. |
Lv B, Zang Y B, Zhang S F, et al. Producing rutile titanium dioxide via titanium tetrachloride vapor phase oxidation approach[J]. Applied Chemical Industry, 2011, 40(8): 1326-1328. | |
18 | 姜海波, 李春忠, 吕志敏, 等. 氯化钛白氧化反应器壁结疤机理[J]. 华东理工大学学报, 2001, 27(2): 152-156. |
Jiang H B, Li C Z, Lv Z M, et al. Sacling mechanism on the oxidation reactor wall in TiO2 synthesis with chloride process[J]. Journal of East China University of Science and Technology, 2001, 27(2): 152-156. | |
19 | 刘强. 氯化法钛白技术氧化反应器内流场的数值研究[D]. 沈阳: 东北大学, 2017. |
Liu Q. Numerical study on flow field in oxidation reactor with chlorination titanium dioxide[D]. Shenyang: Northeastern University, 2017. | |
20 | 李亚东. 氯化法生产钛白中氧化反应器内流体动力学的研究及建模[D]. 昆明: 昆明理工大学, 2016. |
Li Y D. Study and modeling of fluid dynamics in oxidation reactor in titanium dioxide production by chlorination method[D]. Kunming: Kunming University of Science and Technology, 2016. | |
21 | 周艾然. 氯化法钛白氧化反应器结疤机理和除疤方法研究[J]. 钢铁钒钛, 2019, 40(2): 25-30. |
Zhou A R. Study on scar-formation mechanism and scar removal for oxidation reactor of TiO2 by chlorination process[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 25-30. | |
22 | 李春忠, 丛德滋, 吕志敏, 等. 氯化钛白氧化反应器: 00116465.1[P]. 2000-12-27. |
Li C Z, Cong D Z, Lv Z M, et al. Oxidation reactor of TiO2 by chlorination process: 00116465.1[P]. 2000-12-27. | |
23 | Morris A J, Coe M D. System for increasing the capacity of a titanium dioxide producing process: US4803056[P]. 1989-02-07. |
24 | 高殿荣, 王益群, 申功炘. DPIV技术及其在流场测量中的应用[J]. 液压气动与密封, 2001, 21(5): 30-33. |
Gao D R, Wang Y Q, Shen G X. DPIV technique and its application in flow field measurement[J]. Hydraulics Pnenmatics & Seals, 2001, 21(5): 30-33. | |
25 | 王汉封, 柳朝晖, 郭福水, 等. 用PIV数据估算槽道内湍流动能耗散率[J]. 化工学报, 2004, 55(7): 1066-1071. |
Wang H F, Liu Z H, Guo F S, et al. Estimation of turbulent kinetic energy dissipation rate in channel flow by PIV[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(7):1066-1071. | |
26 | 马青山, 聂毅强, 包雨云, 等. 搅拌槽内三维流场的数值模拟[J]. 化工学报, 2003, 54(5): 612-618. |
Ma Q S, Nie Y Q, Bao Y Y, et al. Numerical simulation of hydrodynamics in stirred tank[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(5): 612-618. | |
27 | 孙元智, 张清. 我国氯化法钛白生产技术的进展和今后的工作[J]. 钛工业进展, 2001, 18(3): 6-10. |
Sun Y Z, Zhang Q. Progress and future work of titanium dioxide production technology by chlorination in China[J]. Titanium Industry Progress, 2001, 18(3): 6-10. | |
28 | 高佳明, 王明, 马晓华, 等. 烧结温度对TiO2/不锈钢中空纤维复合膜结构和性能的影响[J]. 化工学报, 2018, 69(11): 4879-4886. |
Gao J M, Wang M, Ma X H, et al. Effect of sintering temperature on structures and properties of TiO2/stainless steel hollow fiber composite membrane[J]. CIESC Journal, 2018, 69(11): 4879-4886. | |
29 | Zheng Y, Zhu J X, Wen J Z, et al. The axial hydrodynamic behavior in a liquid-solid circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 1999, 77(2): 284-290. |
30 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
31 | 张霞, 胡芸, 龚倩, 等. 锰掺杂纳米二氧化钛的制备及其可见光催化性能[J]. 化工进展, 2010, 29(6): 1071-1074, 1079. |
Zhang X, Hu Y, Gong Q, et al. Mn-doped nano-TiO2, preparation and photocatalytic reactivity under visible light irradiation[J]. Chemical Industry and Engineering Progress, 2010, 29(6): 1071-1074, 1079. | |
32 | 任盼锋, 海润泽, 李奇, 等. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
Ren P F, Hai R Z, Li Q, et al. Review of numerical study on liquid-solids two-phase mass transfer process in fluidized bed[J]. CIESC Journal, 2022, 73(1): 1-17. | |
33 | 朱凌云, 郎红方, 周帼彦, 等. 三叶孔板换热器壳程流动及传热数值模拟[J]. 化工学报, 2014, 65(3): 829-835. |
Zhu L Y, Lang H F, Zhou G Y, et al. Numerical simulation on shell side fluid flow and heat transfer in heat exchanger with trefoil-baffles[J]. CIESC Journal, 2014, 65(3): 829-835. | |
34 | 黄陆月, 刘畅, 许勇毅, 等. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943. |
Huang L Y, Liu C, Xu Y Y, et al. Development of CDI two-dimensional concentration mass transfer model and experimental validation[J]. CIESC Journal, 2022, 73(7): 2933-2943. | |
35 | 周少伟, 姜任秋, 宋福元, 等. 涡流管内流动与传热数值模拟[J]. 化工学报, 2006, 57(7): 1548-1552. |
Zhou S W, Jiang R Q, Song F Y, et al. Numerical simulation of flow field and heat transfer within a vortex tube[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1548-1552. | |
36 | 闫云飞, 刘科, 张力. 强化换热凹槽管内流动与传热数值模拟[J]. 化工进展, 2010, 29(12): 2250-2253. |
Yan Y F, Liu K, Zhang L. Numerical investigation on flow and heat transfer in heat transfer enhancement fluted tube[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2250-2253. | |
37 | 胡宇鹏, 莫东鸣, 李友荣. 复杂几何结构腔体内冷水自然对流传热数值模拟[J]. 化工学报, 2014, 65(S1): 66-72. |
Hu Y P, Mo D M, Li Y R. Natural convection of water near its density maximum in cavity with complex geometry structure[J]. CIESC Journal, 2014, 65(S1): 66-72. | |
38 | 田增冬. 基于涡耗散模型的HIFiRE-2超燃冲压发动机仿真[J]. 电子测试, 2020(7): 60-61, 108. |
Tian Z D. Simulation of HIFiRE-2 Scramjet based on eddy dissipation model[J]. Electronic Test, 2020(7): 60-61, 108. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[7] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[8] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||