CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3429-3437.DOI: 10.11949/0438-1157.20230451
• Process system engineering • Previous Articles Next Articles
Chengying ZHU(), Zhenlei WANG()
Received:
2023-05-09
Revised:
2023-07-12
Online:
2023-10-18
Published:
2023-08-25
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:
诸程瑛(1995—),女,硕士研究生, zhulady@me.com
基金资助:
CLC Number:
Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm[J]. CIESC Journal, 2023, 74(8): 3429-3437.
诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437.
算法1:MTD3算法流程 |
---|
随机初始化N个Critic网络 初始化目标网络: 初始化经验回放区B; For Step =1 初始化随机过程,获取环境初始状态 for t = 1 to T do: 根据当前策略和噪声选择动作 从B中随机采样K组( 更新Critic网络参数: if t mod d then:(延迟d轮更新策略网络参数) 根据策略梯度,更新Actor网络参数: 软更新目标Actor网络和目标Critic网络: end if end for |
Table 1 Algorithm process of MTD3
算法1:MTD3算法流程 |
---|
随机初始化N个Critic网络 初始化目标网络: 初始化经验回放区B; For Step =1 初始化随机过程,获取环境初始状态 for t = 1 to T do: 根据当前策略和噪声选择动作 从B中随机采样K组( 更新Critic网络参数: if t mod d then:(延迟d轮更新策略网络参数) 根据策略梯度,更新Actor网络参数: 软更新目标Actor网络和目标Critic网络: end if end for |
网络输入变量 | 网络输出 | 网络层数 | 每层网络神经元个数 | 测试集MSE |
---|---|---|---|---|
COT,DHR, | 2 | 10 | 1.3334×10-10 | |
COT,DHR, | 2 | 10 | 9.5165×10-8 | |
COT,DHR, | 2 | 10 | 6.1901×10-9 | |
COT, | TMT | 2 | 8 | 1.5998×10-9 |
Table 2 Information of neural network models
网络输入变量 | 网络输出 | 网络层数 | 每层网络神经元个数 | 测试集MSE |
---|---|---|---|---|
COT,DHR, | 2 | 10 | 1.3334×10-10 | |
COT,DHR, | 2 | 10 | 9.5165×10-8 | |
COT,DHR, | 2 | 10 | 6.1901×10-9 | |
COT, | TMT | 2 | 8 | 1.5998×10-9 |
动作量 | 描述 | 取值范围 | 归一化范围 |
---|---|---|---|
COT | 炉管出口温度/℃ | [837.00, 844.00] | |
DHR | 汽烃比 | [0.50, 0.52] |
Table 3 Information of action space
动作量 | 描述 | 取值范围 | 归一化范围 |
---|---|---|---|
COT | 炉管出口温度/℃ | [837.00, 844.00] | |
DHR | 汽烃比 | [0.50, 0.52] |
状态量 | 描述 | 范围 | 归一化范围 |
---|---|---|---|
当前运行天数/d | |||
当前炉管外壁温度/℃ | |||
当前 | |||
当前 | |||
当前 |
Table 4 Information of states space
状态量 | 描述 | 范围 | 归一化范围 |
---|---|---|---|
当前运行天数/d | |||
当前炉管外壁温度/℃ | |||
当前 | |||
当前 | |||
当前 |
参数名称 | 参数网格搜索范围 | 参数设定值 |
---|---|---|
奖励系数: | {1,10-1, 5× | 10-2,1,1,1 |
Punishment | {-40, -60, -80, -100} | -100 |
Critic网络个数N | {1, 2, 3, 4} | 3 |
折扣因子 | {0.99, 0.95, 0.90} | 0.99 |
Mini-Batch size (K) | {8, 16, 32, 64} | 32 |
Actor网络学习率 | {10-4, 5×10-4, 10-3, 5×10-3} | 10-4 |
Critic网络学习率 | {10-4, 5×10-4, 10-3, 5×10-3} | 10-3 |
更新率 | {10-4, 5×10-4, 10-3, 5×10-3} | 5×10-3 |
Buffer length | {103, 104, 105} | 104 |
策略延迟更新步数d | {2, 4, 6, 8} | 2 |
Table 5 Parameters setting and grid search range
参数名称 | 参数网格搜索范围 | 参数设定值 |
---|---|---|
奖励系数: | {1,10-1, 5× | 10-2,1,1,1 |
Punishment | {-40, -60, -80, -100} | -100 |
Critic网络个数N | {1, 2, 3, 4} | 3 |
折扣因子 | {0.99, 0.95, 0.90} | 0.99 |
Mini-Batch size (K) | {8, 16, 32, 64} | 32 |
Actor网络学习率 | {10-4, 5×10-4, 10-3, 5×10-3} | 10-4 |
Critic网络学习率 | {10-4, 5×10-4, 10-3, 5×10-3} | 10-3 |
更新率 | {10-4, 5×10-4, 10-3, 5×10-3} | 5×10-3 |
Buffer length | {103, 104, 105} | 104 |
策略延迟更新步数d | {2, 4, 6, 8} | 2 |
策略 | 单个运行周期内平均收率/% | 三烯平均收率/% | ||
---|---|---|---|---|
优化前 | 25.57033224 | 12.78792472 | 4.993497869 | 43.35175483 |
MCOA | 25.68160822 | 12.84300845 | 5.001654668 | 43.52627133 |
TD3 | 25.64259930 | 12.84057390 | 4.998896120 | 43.48206925 |
MTD3 | 25.68328649 | 12.80894534 | 5.038997277 | 43.53122910 |
PPO | 25.63879185 | 12.82470653 | 4.991962284 | 43.45546066 |
Table 6 The average yield of three ethylene cracking products obtained by different algorithms for different strategies
策略 | 单个运行周期内平均收率/% | 三烯平均收率/% | ||
---|---|---|---|---|
优化前 | 25.57033224 | 12.78792472 | 4.993497869 | 43.35175483 |
MCOA | 25.68160822 | 12.84300845 | 5.001654668 | 43.52627133 |
TD3 | 25.64259930 | 12.84057390 | 4.998896120 | 43.48206925 |
MTD3 | 25.68328649 | 12.80894534 | 5.038997277 | 43.53122910 |
PPO | 25.63879185 | 12.82470653 | 4.991962284 | 43.45546066 |
1 | 徐海丰.全球乙烯产业格局变化及发展前景分析[J].国际石油经济, 2023, 31(1): 65-70, 82. |
Xu H F. The change and development prospect of global ethylene industry[J]. International Petroleum Economics, 2023, 31(1): 65-70, 82. | |
2 | 陆浩.我国乙烯工业及下游产业链发展现状与展望[J]. 当代石油石化, 2022, 30(4): 22-27. |
Lu H. Development status and prospect of China’s ethylene industry chain[J]. Petroleum & Petrochemical Today, 2022, 30(4): 22-27. | |
3 | 刘春平, 王昕, 王振雷. 基于相关积分优化方法的裂解炉优化[J]. 化工学报, 2015, 66(10): 4067-4075. |
Liu C P, Wang X, Wang Z L. Optimization of cracking furnace based on correlation integral optimal method[J]. CIESC Journal, 2015, 66(10): 4067-4075. | |
4 | Wang T, Ye Z C, Wang X J, et al. Improved distributed optimization algorithm and its application in energy saving of ethylene plant[J]. Chemical Engineering Science, 2022, 251: 117449. |
5 | 耿志强, 毕帅, 王尊, 等. 基于改进NSGA-Ⅱ算法的乙烯裂解炉操作优化[J]. 化工学报, 2020, 71(3): 1088-1094. |
Geng Z Q, Bi S, Wang Z, et al. Operation optimization of ethylene cracking furnace based on improved NSGA-Ⅱ algorithm[J]. CIESC Journal, 2020, 71(3): 1088-1094. | |
6 | Li C F, Zhu Q X, Geng Z Q. Multi-objective particle swarm optimization hybrid algorithm: an application on industrial cracking furnace[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3602-3609. |
7 | 严逍亚, 王振雷, 王昕. 多策略改进的土狼算法及工业应用[C/OL]//第31届中国过程控制会议(CPCC 2020)摘要集. 徐州, 2020: 59. . |
Yan X Y, Wang Z L, Wang X. A hybrid strategy modified coyote optimization algorithm and its industrial application[C/OL]//TCPC, CAA. CPCC 2020 Summary Set. Xuzhou, 2020: 59. . | |
8 | Nian X Y, Wang Z L, Qian F. A hybrid algorithm based on differential evolution and group search optimization and its application on ethylene cracking furnace[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 537-543. |
9 | 黄一俞. 乙烯裂解炉过程建模与操作优化[D]. 北京: 北京化工大学, 2005. |
Huang Y Y. Process modeling and operation optimization of ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2005. | |
10 | 王秋懿. 基于改进NNIA的乙烯裂解炉操作优化[D]. 北京: 北京化工大学, 2022. |
Wang Q Y. Operation optimization of ethylene cracking furnace based on improved NNIA[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
11 | 尚田丰, 耿志强. 基于GA-RBF网络的乙烯裂解炉在线操作优化[J]. 计算机与应用化学, 2009, 26(8): 1003-1007. |
Shang T F, Geng Z Q. Online operation optimization in ethylene cracking furnace based on GA-RBF network[J]. Computers and Applied Chemistry, 2009, 26(8): 1003-1007. | |
12 | Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. |
13 | Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[EB/OL]. 2015. . |
14 | Fujimoto S, van Hoof H, Meger D. Addressing function approximation error in actor-critic methods[EB/OL]. 2018. . |
15 | Sutton R S, Barto A G. Reinforcement Learning: An Introduction[M]. Cambridge: MIT Press, 1998. |
16 | 南栖仙策. 强化学习控制白皮书[R/OL]. 2022. . |
POLIXIR 2022-RL-Control White Paper[R/OL]. 2022. . | |
17 | Zhu L W, Cui Y D, Takami G, et al. Scalable reinforcement learning for plant-wide control of vinyl acetate monomer process[J]. Control Engineering Practice, 2020, 97: 104331. |
18 | Powell B K M, Machalek D, Quah T. Real-time optimization using reinforcement learning[J]. Computers & Chemical Engineering, 2020, 143: 107077. |
19 | 洪博岩. 乙烯裂解炉平均COT温度先进控制系统的开发与应用[J]. 石油化工高等学校学报, 2019, 32(2): 92-97. |
Hong B Y. Application and development of advanced control system of average COT temperature in the ethylene cracking furnace[J]. Journal of Petrochemical Universities, 2019, 32(2): 92-97. | |
20 | Edwin E H, Arnesen T, Hugosson G I. Evaluation of thermal cracker operation by use of an infrared camera[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3361(2): 125-136 |
21 | Morales E F, Murrieta-Cid R, Becerra I, et al. A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning[J]. Intelligent Service Robotics, 2021, 14(5): 773-805. |
22 | Bengio Y, Lodi A, Prouvost A. Machine learning for combinatorial optimization: a methodological tour d’horizon[J]. European Journal of Operational Research, 2021, 290(2): 405-421. |
23 | Plaat A. Deep Reinforcement Learning[M]. Singapore: Springer Nature Singapore, 2022. |
24 | Pan L, Cai Q P, Huang L B. Softmax deep double deterministic policy gradients[EB/OL]. 2020. . |
25 | Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[EB/OL]. 2017. . |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[7] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[8] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[11] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[12] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[13] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[14] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[15] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 615
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||