CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5262-5276.DOI: 10.11949/0438-1157.20250455
• Surface and interface engineering • Previous Articles Next Articles
Chilou ZHOU(
), Zhiyu LI, Yiran ZHENG
Received:2025-04-28
Revised:2025-05-31
Online:2025-11-25
Published:2025-10-25
Contact:
Chilou ZHOU
通讯作者:
周池楼
作者简介:周池楼(1987—),男,博士,副教授,mezcl@scut.edu.cn
基金资助:CLC Number:
Chilou ZHOU, Zhiyu LI, Yiran ZHENG. Study on hydrogen-induced blister fracture of nitrile butadiene rubber seals servicing in high-pressure hydrogen environments[J]. CIESC Journal, 2025, 76(10): 5262-5276.
周池楼, 李治宇, 郑益然. 高压氢环境下丁腈橡胶密封件氢致鼓泡断裂研究[J]. 化工学报, 2025, 76(10): 5262-5276.
Add to citation manager EndNote|Ris|BibTeX
| 种类 | 参数 | |||||
|---|---|---|---|---|---|---|
| μ1 | μ2 | μ3 | α1 | α2 | α3 | |
| NBR-NF | -1.11867425 | 0.55769888 | 2.22428450 | 3.95182467 | 4.29235510 | -5.95262505 |
| NBR-CB60 | -1.03881682 | 0.04061428 | 3.42857186 | 3.25216863 | 4.47136825 | -6.19905068 |
| NBR-SC40 | -2.69313709 | 0.00685580 | 5.37184092 | 0.76680401 | 5.66714773 | -3.78859558 |
| NBR-SC60 | -12.83982220 | 0.38383626 | 15.57560000 | -0.81938224 | 3.49021679 | -1.84497194 |
| NBR-SC80 | -1.21929769 | -5.31274737 | 15.08764880 | -1.99373914 | 3.35181852 | -6.40709787 |
Table 1 Material model parameters for NBR
| 种类 | 参数 | |||||
|---|---|---|---|---|---|---|
| μ1 | μ2 | μ3 | α1 | α2 | α3 | |
| NBR-NF | -1.11867425 | 0.55769888 | 2.22428450 | 3.95182467 | 4.29235510 | -5.95262505 |
| NBR-CB60 | -1.03881682 | 0.04061428 | 3.42857186 | 3.25216863 | 4.47136825 | -6.19905068 |
| NBR-SC40 | -2.69313709 | 0.00685580 | 5.37184092 | 0.76680401 | 5.66714773 | -3.78859558 |
| NBR-SC60 | -12.83982220 | 0.38383626 | 15.57560000 | -0.81938224 | 3.49021679 | -1.84497194 |
| NBR-SC80 | -1.21929769 | -5.31274737 | 15.08764880 | -1.99373914 | 3.35181852 | -6.40709787 |
Fig.12 Maximum Mises stress, maximum principal strain, maximum hydrogen concentration, maximum hydrogen flux, and maximum displacement of NBR during hydrogen cycle exposure
| [1] | Yasmin R, Ruhul Amin B M, Shah R, et al. A survey of commercial and industrial demand response flexibility with energy storage systems and renewable energy[J]. Sustainability, 2024, 16(2): 731. |
| [2] | Kabeyi M J B, Olanrewaju O A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply[J]. Frontiers in Energy Research, 2022, 9: 743114. |
| [3] | Laimon M, Yusaf T. Towards energy freedom: exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system[J]. Renewable Energy, 2024, 222: 119948. |
| [4] | 周池楼, 刘先晖, 张永君, 等. 钢中夹杂物对氢扩散行为的影响规律[J]. 天然气工业, 2022, 42(9): 135-144. |
| Zhou C L, Liu X H, Zhang Y J, et al. Influence of inclusions in steel on hydrogen diffusion behavior[J]. Natural Gas Industry, 2022, 42(9): 135-144. | |
| [5] | Takeyama Y, Ueno M, Uejima M, et al. Development of carbon nanotube/rubber composite materials with excellent high pressure hydrogen characteristics[J]. Kobunshi Ronbunshu, 2019, 76(4): 288-296. |
| [6] | Zhou C L, Liu X H, Zheng Y R, et al. A comprehensive review of hydrogen-induced swelling in rubber composites[J]. Composites Part B: Engineering, 2024, 275: 111342. |
| [7] | Jung J K, Lee J H, Jeon S K, et al. Correlations between H2 permeation and physical/mechanical properties in ethylene propylene diene monomer polymers blended with carbon black and silica fillers[J]. International Journal of Molecular Sciences, 2023, 24(3): 2865. |
| [8] | Yamabe J, Nishimura S, Koga A. A study on sealing behavior of rubber O-ring in high pressure hydrogen gas[J]. SAE International Journal of Materials and Manufacturing, 2009, 2(1): 452-460. |
| [9] | Zhou C L, Huang Y L, Zheng Y R, et al. Hydrogen permeation behavior of rubber sealing materials for hydrogen infrastructure: recent advances and perspectives[J]. International Journal of Hydrogen Energy, 2024, 59: 742-754. |
| [10] | Chen Q, Peng W Z, Yang M M, et al. Numerical simulation of hydrogen diffusion in rubber O-rings containing a cavity defect based on thermomechanical coupling equivalent model[J]. International Journal of Hydrogen Energy, 2025, 139: 846-853. |
| [11] | Li Y L, Shin Y, Kuang W B, et al. Phase field modeling of hydrogen release in nitrile-butadiene rubber composites after high-pressure hydrogen exposure[J]. International Journal of Hydrogen Energy, 2024, 59: 833-844. |
| [12] | Zhou C L, Zheng Y R, Hua Z L, et al. Recent insights into hydrogen-induced blister fracture of rubber sealing materials: an in-depth examination[J]. Polymer Degradation and Stability, 2024, 224: 110747. |
| [13] | Schrittesser B, Pinter G, Schwarz T, et al. Rapid gas decompression performance of elastomers-a study of influencing testing parameters[J]. Procedia Structural Integrity, 2016, 2: 1746-1754. |
| [14] | Briscoe B J, Savvas T, Kelly C T. “Explosive decompression failure” of rubbers: a review of the origins of pneumatic stress induced rupture in elastomers[J]. Rubber Chemistry and Technology, 1994, 67(3): 384-416. |
| [15] | Fujiwara H, Yamabe J, Nishimura S. Evaluation of the change in chemical structure of acrylonitrile butadiene rubber after high-pressure hydrogen exposure[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8729-8733. |
| [16] | Yamabe J, Matsumoto T, Nishimura S. Internal crack initiation and growth behavior and the influence of shape of specimen on crack damage of EPDM for sealing high-pressure hydrogen gas[J]. Journal of the Society of Materials Science, Japan, 2010, 59(12): 956-963. |
| [17] | Yamabe J, Nishimura S. Nanoscale fracture analysis by atomic force microscopy of EPDM rubber due to high-pressure hydrogen decompression[J]. Journal of Materials Science, 2011, 46(7): 2300-2307. |
| [18] | Yamabe J, Nishimura S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1977-1989. |
| [19] | Kane-Diallo O, Castagnet S, Grandidier J, et al. Morphology of damage occurring during decompression in a hydrogen-exposed EPDM[M]//Constitutive Models for Rubbers IX. Boca Raton: CRC Press, 2015: 345-350. |
| [20] | Kane-Diallo O, Castagnet S, Nait-Ali A, et al. Time-resolved statistics of cavity fields nucleated in a gas-exposed rubber under variable decompression conditions—support to a relevant modeling framework[J]. Polymer Testing, 2016, 51: 122-130. |
| [21] | Castagnet S, Mellier D, Nait-Ali A, et al. In-situ X-ray computed tomography of decompression failure in a rubber exposed to high-pressure gas[J]. Polymer Testing, 2018, 70: 255-262. |
| [22] | Simmons K L. H-Mat: science-based advancement of polymeric materials for hydrogen technologies[R/OL]. Pacific Northwest National Laboratory(2020) [2025-04-28]. . |
| [23] | Kulkarni S S, Choi K S, Kuang W B, et al. Damage evolution in polymer due to pressurization-depressurization cycles of hydrogen gas[R/OL]. Pacific Northwest National Laboratory(2020) [2025-04-28]. . |
| [24] | Simmons K L, Marchi C S. H-Mat overview: polymers[R/OL]. Pacific Northwest National Laboratory(2021) [2025-04-28]. . |
| [25] | Kulkarni S S, Choi K S, Kuang W B, et al. Damage evolution in polymer due to exposure to high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2021, 46(36): 19001-19022. |
| [26] | Simmons K L. H-Mat material compatibility considerations for hydrogen[R/OL]. Pacific Northwest National Laboratory(2022) [2025-04-28]. . |
| [27] | Kulkarni S S, Choi K S, Simmons K. Coupled diffusion-deformation-damage model for polymers used in hydrogen infrastructure[C]//ASME 2022 17th International Manufacturing Science and Engineering Conference、West Lafayette, Indiana, USA, 2022. |
| [28] | Simmons K L, Marchi C S. H-Mat overview: polymers[R/OL]. Pacific Northwest National Laboratory(2022) [2025-04-28]. . |
| [29] | Kulkarni S S, Shin Y, Choi K S, et al. Investigation of desorption of hydrogen gas from polymer matrix using thermal desorption analysis and finite element modeling[J]. Polymer, 2023, 282: 126182. |
| [30] | Kulkarni S S, Choi K S, Menon N, et al. A diffusion–deformation model with damage for polymer undergoing rapid decompression failure[J]. Journal of the Mechanics and Physics of Solids, 2023, 178: 105348. |
| [31] | Castagnet S, Grandidier J C, Comyn M, et al. Mechanical testing of polymers in pressurized hydrogen: tension, creep and ductile fracture[J]. Experimental Mechanics, 2012, 52(3): 229-239. |
| [32] | Yang L M, Shim V P W, Lim C T. A visco-hyperelastic approach to modelling the constitutive behaviour of rubber[J]. International Journal of Impact Engineering, 2000, 24(6/7): 545-560. |
| [33] | Shim V P W, Yang L M, Lim C T, et al. A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber[J]. Journal of Applied Polymer Science, 2004, 92(1): 523-531. |
| [34] | Ogden R W. Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1972, 328(1575): 567-583. |
| [35] | Castagnet S, Ono H, Benoit G, et al. Swelling measurement during sorption and decompression in a NBR exposed to high-pressure hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(30): 19359-19366. |
| [36] | Ono H, Fujiwara H, Nishimura S. Penetrated hydrogen content and volume inflation in unfilled NBR exposed to high-pressure hydrogen—what are the characteristics of unfilled-NBR dominating them?[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18392-18402. |
| [37] | Fujiwara H, Ono H, Nishimura S. Effects of fillers on the hydrogen uptake and volume expansion of acrylonitrile butadiene rubber composites exposed to high pressure hydrogen: property of polymeric materials for high pressure hydrogen devices (3)[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4725-4740. |
| [38] | Zhou C L, Zheng J Y, Gu C H, et al. Sealing performance analysis of rubber O-ring in high-pressure gaseous hydrogen based on finite element method[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11996-12004. |
| [39] | Ono H, Nait-Ali A, Kane Diallo O, et al. Influence of pressure cycling on damage evolution in an unfilled EPDM exposed to high-pressure hydrogen[J]. International Journal of Fracture, 2018, 210(1): 137-152. |
| [40] | Jeon S K, Kwon O H, Tak N H, et al. Relationships between properties and rapid gas decompression (RGD) resistance of various filled nitrile butadiene rubber vulcanizates under high-pressure hydrogen[J]. Materials Today Communications, 2022, 30: 103038. |
| [41] | Wang L L, Zhang L Q, Tian M. Mechanical and tribological properties of acrylonitrile-butadiene rubber filled with graphite and carbon black[J]. Materials & Design, 2012, 39: 450-457. |
| [42] | He X Z, Shi X Y, Hoch M, et al. Mechanical properties of carbon black filled hydrogenated acrylonitrile butadiene rubber for packer compounds[J]. Polymer Testing, 2016, 53: 257-266. |
| [43] | Zhou C L, Yan X W, Zheng Y R, et al. Hydrogen permeation behavior and mechanisms in nitrile butadiene rubber composites for hydrogen sealing[J]. Polymer Degradation and Stability, 2024, 229: 110969. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [8] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [9] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [10] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [11] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [12] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [13] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [14] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [15] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||