CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5554-5573.DOI: 10.11949/0438-1157.20250484
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Bohui SHI1(
), Guangshuo LIU1, Enqi GUO1, Xiaohang SHI1, Haotian LIU2, Haihao WU1, Xiaoping LI1, Shangfei SONG1(
), Jing GONG1
Received:2025-05-06
Revised:2025-07-01
Online:2025-12-19
Published:2025-11-25
Contact:
Shangfei SONG
史博会1(
), 刘光硕1, 郭恩岐1, 史潇航1, 刘浩田2, 吴海浩1, 李晓平1, 宋尚飞1(
), 宫敬1
通讯作者:
宋尚飞
作者简介:史博会(1984—),女,博士,副教授,bh.shi@cup.edu.cn
基金资助:CLC Number:
Bohui SHI, Guangshuo LIU, Enqi GUO, Xiaohang SHI, Haotian LIU, Haihao WU, Xiaoping LI, Shangfei SONG, Jing GONG. Numerical study on flow aggregation and deposition processes of hydrates in water-based systems using CFD-DEM[J]. CIESC Journal, 2025, 76(11): 5554-5573.
史博会, 刘光硕, 郭恩岐, 史潇航, 刘浩田, 吴海浩, 李晓平, 宋尚飞, 宫敬. 基于CFD-DEM的水基体系水合物流动聚集与沉积过程模拟研究[J]. 化工学报, 2025, 76(11): 5554-5573.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 浆液密度/(kg/m3) | 998.2 |
| 浆液黏度/(kg/(m·s)) | 0.001 |
| 水合物颗粒粒径/mm | 1 |
| 水合物颗粒密度/(kg/m3) | 900 |
| 水合物颗粒泊松比 | 0.21 |
| 水合物颗粒剪切弹性模量/(N/m2) | 1.22×107 |
| 管道材料密度/(kg/m3) | 7800 |
| 管道材料泊松比 | 0.3 |
| 管道材料剪切弹性模量/(N/m2) | 7×1010 |
| 颗粒-颗粒的恢复系数 | 0.15 |
| 颗粒-颗粒的静摩擦因数 | 0.1 |
| 颗粒-壁面的恢复系数 | 0.5 |
| 颗粒-壁面的静摩擦因数 | 0.5 |
Table 1 Simulation parameter setting
| 参数 | 数值 |
|---|---|
| 浆液密度/(kg/m3) | 998.2 |
| 浆液黏度/(kg/(m·s)) | 0.001 |
| 水合物颗粒粒径/mm | 1 |
| 水合物颗粒密度/(kg/m3) | 900 |
| 水合物颗粒泊松比 | 0.21 |
| 水合物颗粒剪切弹性模量/(N/m2) | 1.22×107 |
| 管道材料密度/(kg/m3) | 7800 |
| 管道材料泊松比 | 0.3 |
| 管道材料剪切弹性模量/(N/m2) | 7×1010 |
| 颗粒-颗粒的恢复系数 | 0.15 |
| 颗粒-颗粒的静摩擦因数 | 0.1 |
| 颗粒-壁面的恢复系数 | 0.5 |
| 颗粒-壁面的静摩擦因数 | 0.5 |
| 工况 | 压力/MPa | 入口流速/(m/s) | 水合物体积分数/% | 实验单位压降/(Pa/m) | 模拟单位压降/(Pa/m) | 偏差/% |
|---|---|---|---|---|---|---|
| 1 | 6.45 | 0.202 | 5 | 285.13 | 336.32 | 17.6 |
| 2 | 6.45 | 0.569 | 2 | 261.79 | 301.49 | 15.2 |
| 3 | 6.45 | 0.690 | 4 | 328.12 | 351.66 | 7.0 |
| 4 | 6.45 | 0.320 | 8 | 296.45 | 338.43 | 14.2 |
| 5 | 6.45 | 0.910 | 9 | 685.32 | 802.66 | 17.1 |
| 6 | 5.15 | 0.550 | 2.5 | 283.21 | 324.41 | 14.5 |
| 7 | 5.15 | 0.618 | 3 | 365.28 | 380.03 | 3.8 |
| 8 | 5.15 | 0.323 | 8 | 2944.67 | 325.13 | 10.6 |
| 9 | 5.15 | 0.234 | 10 | 306.53 | 361.65 | 18.0 |
| 10 | 5.15 | 0.750 | 10 | 429.31 | 405.62 | 10.6 |
Table 2 Experimental and simulation comparison of hydrate unit pressure drop
| 工况 | 压力/MPa | 入口流速/(m/s) | 水合物体积分数/% | 实验单位压降/(Pa/m) | 模拟单位压降/(Pa/m) | 偏差/% |
|---|---|---|---|---|---|---|
| 1 | 6.45 | 0.202 | 5 | 285.13 | 336.32 | 17.6 |
| 2 | 6.45 | 0.569 | 2 | 261.79 | 301.49 | 15.2 |
| 3 | 6.45 | 0.690 | 4 | 328.12 | 351.66 | 7.0 |
| 4 | 6.45 | 0.320 | 8 | 296.45 | 338.43 | 14.2 |
| 5 | 6.45 | 0.910 | 9 | 685.32 | 802.66 | 17.1 |
| 6 | 5.15 | 0.550 | 2.5 | 283.21 | 324.41 | 14.5 |
| 7 | 5.15 | 0.618 | 3 | 365.28 | 380.03 | 3.8 |
| 8 | 5.15 | 0.323 | 8 | 2944.67 | 325.13 | 10.6 |
| 9 | 5.15 | 0.234 | 10 | 306.53 | 361.65 | 18.0 |
| 10 | 5.15 | 0.750 | 10 | 429.31 | 405.62 | 10.6 |
| 工况 | 纯水单相流动模拟的单位压降/(Pa/m) | 含水合物颗粒浆液流动模拟相比纯水单相流动模拟单位压降的增幅倍数 |
|---|---|---|
| 1 | 4.34 | 65.7 |
| 2 | 21.53 | 12.2 |
| 3 | 30.78 | 10.7 |
| 4 | 7.52 | 39.4 |
| 5 | 47.81 | 14.3 |
| 6 | 20.25 | 14.0 |
| 7 | 25.18 | 14.5 |
| 8 | 7.25 | 40.6 |
| 9 | 7.26 | 42.2 |
| 10 | 35.43 | 12.1 |
Table 3 Pure water and hydrate particle-laden simulations comparison of unit pressure drop
| 工况 | 纯水单相流动模拟的单位压降/(Pa/m) | 含水合物颗粒浆液流动模拟相比纯水单相流动模拟单位压降的增幅倍数 |
|---|---|---|
| 1 | 4.34 | 65.7 |
| 2 | 21.53 | 12.2 |
| 3 | 30.78 | 10.7 |
| 4 | 7.52 | 39.4 |
| 5 | 47.81 | 14.3 |
| 6 | 20.25 | 14.0 |
| 7 | 25.18 | 14.5 |
| 8 | 7.25 | 40.6 |
| 9 | 7.26 | 42.2 |
| 10 | 35.43 | 12.1 |
| [1] | 李清平, 周守为, 赵佳飞, 等. 天然气水合物开采技术研究现状与展望[J]. 中国工程科学, 2022, 24(3): 214-224. |
| Li Q P, Zhou S W, Zhao J F, et al. Research status and prospects of natural gas hydrate exploitation technology[J]. Strategic Study of CAE, 2022, 24(3): 214-224. | |
| [2] | 邓乐洋, 王雨婷, 王春辉, 等. 油气输送管道水合物堵塞机理、特性及其检测研究进展[J]. 油气与新能源, 2025, 37(2): 47-55. |
| Deng L Y, Wang Y T, Wang C H, et al. Research progress on hydrate plugging mechanism, characteristics and detection of oil and gas pipeline[J]. Petroleum and New Energy, 2025, 37(2): 47-55. | |
| [3] | 宫敬, 史博会, 陈玉川, 等. 含天然气水合物的海底多相管输及其堵塞风险管控[J]. 天然气工业, 2020, 40(12): 133-142. |
| Gong J, Shi B H, Chen Y C, et al. Submarine multiphase pipeline transport containing natural gas hydrate and its plugging risk prevention and control[J]. Natural Gas Industry, 2020, 40(12): 133-142. | |
| [4] | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008. |
| Chen G J, Sun C Y, Ma Q L. Gas Hydrate Science and Technology[M]. Beijing: Chemical Industry Press, 2008. | |
| [5] | Doron P, Barnea D. A three-layer model for solid-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1993, 19(6): 1029-1043. |
| [6] | Balakin B V, Lo S, Kosinski P, et al. Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique[J]. Chemical Engineering Science, 2016, 153: 45-57. |
| [7] | Shi B H, Wang J Q, Yu Y F, et al. Investigation on the transition criterion of smooth stratified flow to other flow patterns for gas-hydrate slurry flow[J]. International Journal of Chemical Engineering, 2017, 2017: 9846507. |
| [8] | Shi B H, Gong J, Sun C Y, et al. An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer[J]. Chemical Engineering Journal, 2011, 171(3): 1308-1316. |
| [9] | Wang W C, Fan S S, Liang D Q, et al. Experimental study on flow characteristics of tetrahydrofuran hydrate slurry in pipelines[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 318-322. |
| [10] | Bu Y H, Lu Z L, Lu C, et al. Molecular design and evaluation of hydrate dissociation inhibitors used in cementing slurry based on molecular dynamic simulations[J]. Fuel, 2023, 354: 129317. |
| [11] | Li L X, Liang Q Y, Yu Y J, et al. Microbial self-healing cementing slurry: a promising technology in deepwater with gas hydrate formations[J]. Gas Science and Engineering, 2025, 139: 205637. |
| [12] | Liu X, Yuan A, Li Y X, et al. Numerical simulation of hydrate slurry flow and deposit behavior based on openfoam-IATE[J]. Fuel, 2022, 310: 122426. |
| [13] | Lv X F, Zhang J, Liu Y, et al. Simulation study of natural gas hydrate slurry flow characteristics in a high-pressure flow loop[J]. Fuel, 2022, 316: 123332. |
| [14] | Lv X F, Xu K Y, Liu Y, et al. Numerical simulation analysis of stable flow of hydrate slurry in gas-liquid-solid multiphase flow[J]. Ocean Engineering, 2024, 300: 117336. |
| [15] | Song G C, Li Y X, Wang W C, et al. Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling[J]. Journal of Petroleum Science and Engineering, 2018, 169: 393-404. |
| [16] | Balakin B V, Chang Y F, Øynes M, et al. Plugging of pipes by cohesive particles. Computed tomography investigation and theoretical analysis[J]. Chemical Engineering Science, 2024, 296: 120214. |
| [17] | Sontti S G, Zhang X H. Numerical insights from a population balance model into the distribution of bitumen residues in industrial horizontal pipes during the hydrotransport of oil sands tailings[J]. Industrial & Engineering Chemistry Research, 2024, 63(1): 691-705. |
| [18] | Pei J H, Shen J Y, Wang Z Y, et al. Numerical simulation of hydrate flow in gas-dominated undulating pipes considering nucleation and deposition behaviors[J]. Chemical Engineering Science, 2025, 301: 120735. |
| [19] | Ma H Q, Zhou L Y, Liu Z H, et al. A review of recent development for the CFD-DEM investigations of non-spherical particles[J]. Powder Technology, 2022, 412: 117972. |
| [20] | Wang J A, Li Y, Zhao J F, et al. Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation[J]. Petroleum, 2023, 9(3): 403-411. |
| [21] | Duan X, Shi B H, Wang J N, et al. Simulation of the hydrate blockage process in a water-dominated system via the CFD-DEM method[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104241. |
| [22] | Tang Y, Xie N, He Y F, et al. Study on the performance of downhole spiral-cyclone coupling separator for natural gas hydrate[J]. Advanced Powder Technology, 2024, 35(10): 104638. |
| [23] | Katagiri J, Yoneda J, Tenma N. Multiobjective optimization of the particle aspect ratio for gravel pack in a methane-hydrate reservoir using pore scale simulation[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 920-927. |
| [24] | Li X, Li C P, Ruan Z E, et al. Analysis of particle migration and agglomeration in paste mixing based on discrete element method[J]. Construction and Building Materials, 2022, 352: 129007. |
| [25] | Qin S, Xu T, Zhou W H, et al. Infiltration behaviour and microstructure of filter cake from sand-modified bentonite slurry[J]. Transportation Geotechnics, 2023, 40: 100963. |
| [26] | Ren W L, Zhang X H, Zhang Y, et al. The impact of particle size and concentration on the characteristics of solid-fluid two-phase flow in vertical pipe under pulsating flow[J]. Chemical Engineering Journal, 2024, 500: 156398. |
| [27] | Dai Y, Zhang Y Y, Li X Y. Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining[J]. Ocean Engineering, 2021, 220: 108411. |
| [28] | Fan J C, Zhang S M, Yao B C, et al. Numerical simulation of the motion of polypropylene-particles in a horizontal straight pipe[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103854. |
| [29] | Hayashi K, Watano S. Novel population balance model for granule aggregation and breakage in fluidized bed granulation and drying[J]. Powder Technology, 2019, 342: 664-675. |
| [30] | Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1971, 324(1558): 301-313. |
| [1] | Zhuolong LIU, Yunhua GAN, Keyang QU, Ningguang CHEN, Minghui PAN. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion [J]. CIESC Journal, 2025, 76(9): 4800-4808. |
| [2] | Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model [J]. CIESC Journal, 2025, 76(8): 3885-3893. |
| [3] | Xinquan CHANG, Kexue ZHANG, Jun WANG, Guodong XIA. Thermophoretic forces on irregular particles in the free molecular regime [J]. CIESC Journal, 2025, 76(8): 3944-3953. |
| [4] | Hang ZHOU, Sijing ZHANG, Jian LIU, Xiaosong ZHANG. Numerical analysis of flow boiling heat transfer of zeotropic mixtures in mini-channels [J]. CIESC Journal, 2025, 76(8): 3864-3872. |
| [5] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [6] | Xi CHEN, Shuyan WANG, Baoli SHAO, Nuo DING, Lei XIE. Numerical simulation study of liquid-solid fluidized beds based on second-order moment model of particle dynamic restitution coefficient [J]. CIESC Journal, 2025, 76(7): 3246-3258. |
| [7] | Chenru ZHOU, Chenwei LIU, Zhiyuan WANG, Minhui QI, Sanbao DONG, Xiangyu WANG, Mingzhong LI. Effect of methanol and ethylene glycol on adhesion strength of methane hydrates [J]. CIESC Journal, 2025, 76(7): 3596-3604. |
| [8] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [9] | Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor [J]. CIESC Journal, 2025, 76(6): 2958-2973. |
| [10] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
| [11] | Zhongqing LI, Zhiyuan WANG, Xiaojian LUAN, Sikai LIANG, Kai WANG. Preparation of MnO coating based on electroplating-low oxygen partial pressure treatment and coking inhibition properties during thermal cracking of naphtha [J]. CIESC Journal, 2025, 76(3): 1050-1063. |
| [12] | Xinyuan ZHANG, Chengxiang HE, Yating LI, Chunying ZHU, Youguang MA, Taotao FU. Advances in simulation and experimental research methods for mass transfer of liquid-liquid heterogeneous system in microchannels [J]. CIESC Journal, 2025, 76(2): 484-503. |
| [13] | Zhu FANG, Yaqin LIAO, Qian ZHANG, Yiyang ZHANG, Shuiqing LI. Study on adhesion loose packing limit of adhesive ellipsoids based on random ballistic deposition method [J]. CIESC Journal, 2025, 76(11): 5533-5543. |
| [14] | Yuanhe YUE, Weiwei ZHAO, Linjie HOU, Yong ZHANG, Zhonghao RAO. Study on the scaling-up of spouted fluidized beds based on the dual-nozzle spouting unit [J]. CIESC Journal, 2025, 76(11): 5664-5676. |
| [15] | Haiyang SHANG, Jun YAO, Yanlin ZHAO, Sheng CHEN, Meng HE. Direct numerical simulation of two-phase turbulence in a square duct under different interphase interactions [J]. CIESC Journal, 2025, 76(11): 5730-5738. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||