CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 6066-6076.DOI: 10.11949/0438-1157.20250259
• Energy and environmental engineering • Previous Articles
Wendi CHENG1(
), Daquan ZHANG2(
)
Received:2025-03-17
Revised:2025-04-07
Online:2025-12-19
Published:2025-11-25
Contact:
Daquan ZHANG
通讯作者:
张大全
作者简介:程闻笛(1993—),男,硕士,工程师,2119671460@qq.com
CLC Number:
Wendi CHENG, Daquan ZHANG. Numerical study of thermal characteristics of energy storage battery packs[J]. CIESC Journal, 2025, 76(11): 6066-6076.
程闻笛, 张大全. 储能电池包的热特性数值研究[J]. 化工学报, 2025, 76(11): 6066-6076.
Add to citation manager EndNote|Ris|BibTeX
| Contents | Value |
|---|---|
| Nominal capacity/(A·h) | 280 |
| Mass/kg | 5.5 |
| Energy density/(W·h/kg) | |
| Direct current internal resistance/mΩ | 0.50 (10 s,25℃,25% SOC) |
| Dimensions (width×thickness×height)/mm | 173.8 |
| Charging cut-off voltage/V | 3.65 |
| Discharge cut-off voltage/V | 2.5 |
Table 1 Specifications of semi-solid lithium batteries
| Contents | Value |
|---|---|
| Nominal capacity/(A·h) | 280 |
| Mass/kg | 5.5 |
| Energy density/(W·h/kg) | |
| Direct current internal resistance/mΩ | 0.50 (10 s,25℃,25% SOC) |
| Dimensions (width×thickness×height)/mm | 173.8 |
| Charging cut-off voltage/V | 3.65 |
| Discharge cut-off voltage/V | 2.5 |
| Type | Density/(kg/m3) | Specific heat/( | Thermal conductivity/( |
|---|---|---|---|
| Cell | 2152 | 1051.1 | λth=1.04, λw,λh=21.05 |
| Liquid cooling plate | 2680 | 880 | 237 |
| Thermal silica gel | 2420 | 967 | 2.1 |
| Coolant | 1065 | 3394 | 0.419 |
| PC board | 1200 | 1340 | 0.194 |
Table 2 Physical property parameters of main components of battery pack
| Type | Density/(kg/m3) | Specific heat/( | Thermal conductivity/( |
|---|---|---|---|
| Cell | 2152 | 1051.1 | λth=1.04, λw,λh=21.05 |
| Liquid cooling plate | 2680 | 880 | 237 |
| Thermal silica gel | 2420 | 967 | 2.1 |
| Coolant | 1065 | 3394 | 0.419 |
| PC board | 1200 | 1340 | 0.194 |
| SOC | Internal resistance/mΩ | |||||||
|---|---|---|---|---|---|---|---|---|
| -20℃ | -10℃ | 0℃ | 10℃ | 25℃ | 35℃ | 45℃ | 55℃ | |
| 0 | — | — | — | — | — | — | — | — |
| 5 | 5.34 | 3.66 | 1.73 | 1.24 | 0.57 | 0.46 | 0.34 | 0.23 |
| 10 | 5.05 | 3.47 | 1.63 | 1.18 | 0.53 | 0.43 | 0.33 | 0.22 |
| 15 | 4.75 | 3.29 | 1.56 | 1.13 | 0.51 | 0.42 | 0.32 | 0.23 |
| 20 | 4.46 | 3.11 | 1.50 | 1.09 | 0.49 | 0.40 | 0.32 | 0.23 |
| 25 | 4.17 | 2.93 | 1.45 | 1.06 | 0.47 | 0.39 | 0.31 | 0.23 |
| 30 | 3.88 | 2.76 | 1.41 | 1.03 | 0.46 | 0.39 | 0.31 | 0.23 |
| 35 | 3.64 | 2.59 | 1.38 | 1.00 | 0.45 | 0.38 | 0.30 | 0.23 |
| 40 | 3.43 | 2.46 | 1.34 | 0.98 | 0.44 | 0.37 | 0.30 | 0.23 |
| 45 | 3.24 | 2.33 | 1.32 | 0.96 | 0.43 | 0.37 | 0.30 | 0.23 |
| 50 | 3.14 | 2.24 | 1.29 | 0.94 | 0.43 | 0.36 | 0.29 | 0.23 |
| 55 | 3.12 | 2.20 | 1.27 | 0.93 | 0.42 | 0.36 | 0.29 | 0.23 |
| 60 | 3.09 | 2.18 | 1.25 | 0.92 | 0.42 | 0.36 | 0.29 | 0.23 |
| 65 | 3.05 | 2.15 | 1.24 | 0.91 | 0.43 | 0.37 | 0.30 | 0.23 |
| 70 | 3.01 | 2.13 | 1.23 | 0.91 | 0.42 | 0.36 | 0.30 | 0.23 |
| 75 | 2.97 | 2.10 | 1.22 | 0.90 | 0.41 | 0.35 | 0.29 | 0.23 |
| 80 | 2.93 | 2.07 | 1.21 | 0.89 | 0.41 | 0.35 | 0.29 | 0.23 |
| 85 | 2.88 | 2.04 | 1.19 | 0.87 | 0.40 | 0.34 | 0.29 | 0.23 |
| 90 | 2.83 | 2.00 | 1.17 | 0.86 | 0.39 | 0.34 | 0.28 | 0.23 |
| 95 | 2.79 | 1.97 | 1.16 | 0.85 | 0.39 | 0.33 | 0.28 | 0.23 |
| 100 | 2.77 | 1.97 | 1.17 | 0.86 | 0.39 | 0.34 | 0.29 | 0.23 |
Table 3 10 s pulse discharge internal resistance
| SOC | Internal resistance/mΩ | |||||||
|---|---|---|---|---|---|---|---|---|
| -20℃ | -10℃ | 0℃ | 10℃ | 25℃ | 35℃ | 45℃ | 55℃ | |
| 0 | — | — | — | — | — | — | — | — |
| 5 | 5.34 | 3.66 | 1.73 | 1.24 | 0.57 | 0.46 | 0.34 | 0.23 |
| 10 | 5.05 | 3.47 | 1.63 | 1.18 | 0.53 | 0.43 | 0.33 | 0.22 |
| 15 | 4.75 | 3.29 | 1.56 | 1.13 | 0.51 | 0.42 | 0.32 | 0.23 |
| 20 | 4.46 | 3.11 | 1.50 | 1.09 | 0.49 | 0.40 | 0.32 | 0.23 |
| 25 | 4.17 | 2.93 | 1.45 | 1.06 | 0.47 | 0.39 | 0.31 | 0.23 |
| 30 | 3.88 | 2.76 | 1.41 | 1.03 | 0.46 | 0.39 | 0.31 | 0.23 |
| 35 | 3.64 | 2.59 | 1.38 | 1.00 | 0.45 | 0.38 | 0.30 | 0.23 |
| 40 | 3.43 | 2.46 | 1.34 | 0.98 | 0.44 | 0.37 | 0.30 | 0.23 |
| 45 | 3.24 | 2.33 | 1.32 | 0.96 | 0.43 | 0.37 | 0.30 | 0.23 |
| 50 | 3.14 | 2.24 | 1.29 | 0.94 | 0.43 | 0.36 | 0.29 | 0.23 |
| 55 | 3.12 | 2.20 | 1.27 | 0.93 | 0.42 | 0.36 | 0.29 | 0.23 |
| 60 | 3.09 | 2.18 | 1.25 | 0.92 | 0.42 | 0.36 | 0.29 | 0.23 |
| 65 | 3.05 | 2.15 | 1.24 | 0.91 | 0.43 | 0.37 | 0.30 | 0.23 |
| 70 | 3.01 | 2.13 | 1.23 | 0.91 | 0.42 | 0.36 | 0.30 | 0.23 |
| 75 | 2.97 | 2.10 | 1.22 | 0.90 | 0.41 | 0.35 | 0.29 | 0.23 |
| 80 | 2.93 | 2.07 | 1.21 | 0.89 | 0.41 | 0.35 | 0.29 | 0.23 |
| 85 | 2.88 | 2.04 | 1.19 | 0.87 | 0.40 | 0.34 | 0.29 | 0.23 |
| 90 | 2.83 | 2.00 | 1.17 | 0.86 | 0.39 | 0.34 | 0.28 | 0.23 |
| 95 | 2.79 | 1.97 | 1.16 | 0.85 | 0.39 | 0.33 | 0.28 | 0.23 |
| 100 | 2.77 | 1.97 | 1.17 | 0.86 | 0.39 | 0.34 | 0.29 | 0.23 |
| [1] | Mustafa J. Numerical investigation of the effect of inlet dimensions air duct and distance of battery packs for thermal management of three lithium-ion battery packs[J]. Journal of Energy Storage, 2022, 48: 103959. |
| [2] | Yang H, Liu N H, Gu M J, et al. Optimized design of novel serpentine channel liquid cooling plate structure for lithium-ion battery based on discrete continuous variables[J]. Applied Thermal Engineering, 2025, 264: 125502. |
| [3] | Liu Z Y, Xiong C F, Du X F. Research on the optimization control strategy of a battery thermal management system based on serpentine liquid cooling combined with phase change material[J]. Journal of Power Sources, 2025, 630: 236127. |
| [4] | Dai H S, Yang C X, Zhang F, et al. Transient heat dissipation performance investigation on the battery thermal management system based on S-CO2 immersion cooling[J]. Energy, 2025, 318:134656. |
| [5] | Wang G L, Gu L, Li Y, et al. Optimization of guide plates and orifice plates on thermal management of battery energy storage system[J]. Applied Thermal Engineering, 2024, 253: 123794. |
| [6] | Hai T, Awatef A, Azher M A, et al. Three-dimensional numerical study of the effect of an air-cooled system on thermal management of a cylindrical lithium-ion battery pack with two different arrangements of battery cells[J]. Journal of Power Sources, 2022,50:232117. |
| [7] | Wu C X, Sun Y L, Tang H, et al. A review on the liquid cooling thermal management system of lithium-ion batteries[J]. Applied Energy, 2024, 375: 124173. |
| [8] | Sarvar-Ardeh S, Rafee R, Rashidi S. Enhancing the performance of liquid-based battery thermal management system by porous substrate minichannel[J]. Journal of Energy Storage, 2023, 71:108142. |
| [9] | 刘周斌, 朱涛, 姜巍, 等. 储能锂离子电池包冷却系统的数值模拟与结构优化[J]. 中国电力, 2023, 56(10): 202-210. |
| Liu Z B, Zhu T, Jiang W, et al. Simulation analysis and structure optimization of cooling system for energy storage lithium-ion battery pack[J]. Electric Power, 2023, 56(10): 202-210. | |
| [10] | 张子惠, 韩东, 熊佳明, 等. MVR降膜式储能电池间接液冷系统设计及性能分析[J]. 节能技术, 2024, 42(6): 523-529. |
| Zhang Z H, Han D, Xiong J M, et al. Process design and performance analysis of an indirect liquid-cooling system based on mechanical vapor recompression(MVR) falling film evaporation for energy storage battery[J]. Energy Conservation Technology, 2024, 42(6): 523-529. | |
| [11] | Lin X W, Zhou Z F, Li M X, et al. Exploration on the liquid-based energy storage battery system from system design, parametric optimization, and control strategy[J]. Renewable Energy, 2024, 237: 121904. |
| [12] | Wei W H, Luo Z, Qiao S X, et al. Analysis and design of module-level liquid cooling system for rectangular Li-ion batteries[J]. International Journal of Heat and Mass Transfer, 2024, 225:125435. |
| [13] | Thakur A K, Ahmed M S, Kang H, et al. Critical review on internal and external battery thermal management systems for fast charging applications[J]. Advanced Energy Materials, 2023, 13(11): 2202944. |
| [14] | Ashkboos P, Yousefi A, Houshfar E. Design improvement of thermal management for Li-ion battery energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101094. |
| [15] | Feng Y, Zhou L M, Ma H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries[J]. Energy & Environmental Science, 2022, 15(5): 1711-1759. |
| [16] | 钱亨, 刘剑, 霍玉雷. 扰流结构对电池热管理系统的传热特性研究[J]. 储能科学与技术, 2024, 13(11): 3889-3897. |
| Qian H, Liu J, Huo Y L. Heat transfer characteristics of lithium-ion battery thermal management system with spoiler structure[J]. Energy Storage Science and Technology, 2024, 13(11): 3889-3897. | |
| [17] | 张新宇, 罗声豪, 吴颖欣, 等. 复合相变材料用于锂离子电池热管理和热失控防护研究进展[J]. 储能科学与技术, 2025, 14(3): 1040-1053. |
| Zhang X Y, Luo S H, Wu Y X, et al. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. | |
| [18] | Jouhara H, Khordehgah N, Serey N, et al. Applications and thermal management of rechargeable batteries for industrial applications[J]. Energy, 2019, 170: 849-861. |
| [19] | Liu Z Q, Cao M, Li J H, et al. Performance analysis and comparison study of liquid cooling-based shell-and-tube battery thermal management systems[J]. Journal of Energy Storage, 2024, 80:110234. |
| [20] | Feng X H, Li Z Z, Gu F S, et al. Structural design and optimization of air-cooled thermal management system for lithium-ion batteries based on discrete and continuous variables[J]. Journal of Energy Storage, 2024, 86: 111202. |
| [21] | 郭鹏宇, 王铭民, 许栋栋, 等. 调峰和调频工况下磷酸铁锂电池组的冷却研究[J]. 低温与超导, 2024, 52(3): 88-95. |
| Guo P Y, Wang M M, Xu D D, et al. Study on cooling of Lithium iron phosphate battery under peak shaving and frequency modulation conditions[J]. Cryogenics & Superconductivity, 2024, 52(3): 88-95. | |
| [22] | Cheng W M, Chen M Y, Ouyang D X, et al. Investigation of the thermal performance and heat transfer characteristics of the lithium-ion battery module based on an oil-immersed cooling structure[J]. Journal of Energy Storage, 2024, 79: 110184. |
| [23] | Liu S, Liu Y, Gu H C, et al. Experimental study of the cooling performance of γ-Al2O3/heat transfer fluid nanofluid for power batteries[J]. Journal of Energy Storage, 2023, 72: 108476. |
| [24] | Lin X W, Shi M Y, Zhou Z F, et al. Multi-objective topology optimization design of liquid-based cooling plate for 280 Ah prismatic energy storage battery thermal management[J]. Energy Conversion and Management, 2025, 325: 119440. |
| [25] | Wu C T, Yuan X L, Kong B B, et al. Innovative liquid cooling channel enhanced battery thermal management (BTM) structure based on stepwise optimization method[J]. Journal of Energy Storage, 2024, 81: 110485. |
| [26] | 李岳峰, 徐卫潘, 韦银涛, 等. 储能锂电池包浸没式液冷系统散热设计及热仿真分析[J]. 储能科学与技术, 2024, 13(10): 3534-3544. |
| Li Y F, Xu W P, Wei Y T, et al. Thermal design and simulation analysis of an immersing liquid cooling system for lithium-ions battery packs in energy storage applications[J]. Energy Storage Science and Technology, 2024, 13(10): 3534-3544. | |
| [27] | 王罗亚, 吴超, 殷文倩, 等. 适用多工况的储能电池液冷系统优化设计及分析[J]. 电源技术, 2024, 48(12): 2434-2443. |
| Wang L Y, Wu C, Yin W Q, et al. Optimization design and analysis of liquid cooling system for energy storage battery with multiple working conditions[J]. Chinese Journal of Power Sources, 2024, 48(12): 2434-2443. | |
| [28] | Xiao J S, Zhang X, Bénard P, et al. Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system[J]. Energy Storage, 2023, 5(6): e453. |
| [29] | Gan H L, Tian J A, Qiu H R, et al. Thermal performance of symmetrical double-spiral channel liquid cooling plate based battery thermal management for energy storage system[J]. Applied Thermal Engineering, 2025, 263: 125399. |
| [30] | Liu S J, Wang Y, Liu Q, et al. Thermal equalization design for the battery energy storage system (BESS) of a fully electric ship[J]. Energy, 2024, 312: 133611. |
| [31] | Yao F D, Guan X, Chen Q R, et al. Research on thermal management system of lithium-ion battery with a new type of spider web liquid cooling channel and phase change materials[J]. Journal of Energy Storage, 2024, 81: 110447. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [8] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [9] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [10] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [11] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [12] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [13] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [14] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [15] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||