CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6236-6257.DOI: 10.11949/0438-1157.20250450
• Reviews and monographs • Previous Articles Next Articles
Shuai LIANG1,2(
), Shuhui GAO1(
), Yongli YAN3, Guirong WANG1, Yinxuan QU1
Received:2025-04-28
Revised:2025-06-12
Online:2026-01-23
Published:2025-12-31
Contact:
Shuhui GAO
梁帅1,2(
), 高树辉1(
), 闫永丽3, 王贵容1, 屈音璇1
通讯作者:
高树辉
作者简介:梁帅(1989—),男,博士研究生,副教授,15320186705@163.com
基金资助:CLC Number:
Shuai LIANG, Shuhui GAO, Yongli YAN, Guirong WANG, Yinxuan QU. Research progress of latent fingerprint optical visualization technology based on aggregation induced emission materials[J]. CIESC Journal, 2025, 76(12): 6236-6257.
梁帅, 高树辉, 闫永丽, 王贵容, 屈音璇. 基于聚集诱导发光材料的潜指印光学显现技术研究进展[J]. 化工学报, 2025, 76(12): 6236-6257.
Add to citation manager EndNote|Ris|BibTeX
| 指印分泌物质 | 成份 | 化学结构 |
|---|---|---|
| 外分泌汗腺(汗液) | 有机物:蛋白质、多肽(200mg/L)葡萄糖(3.5mg/L)乳酸(3.15mg/L);氨基酸(1.45mg/L)尿素(2mg/L)丙酮酸(2mg/L) | ![]() |
| 无机物:水(98%~99%)氯离子(3.5g/L)钠离子(3.3g/L钾离子(0.2g/L)镁离子(0.04g/L)铁离子(3.5mg/L)钙离子(2mg/L)碳酸氢盐(107mg/L)硫酸盐(10mg/L)磷酸盐(1.4mg/L) | ||
| 皮脂腺(脂质) | 游离脂肪酸(37.6%)甘油三脂、胆固醇脂(25%)蜡脂(21%)角鲨烯(14.6%)胆固醇(3.8%) | ![]() |
| 顶分泌汗腺 | 有机物:蛋白质、胆固醇、类固醇 无机物:铁 | — |
Table 1 Main components and their contents in latent fingerprint residues and chemical structures of some substances[51-52]
| 指印分泌物质 | 成份 | 化学结构 |
|---|---|---|
| 外分泌汗腺(汗液) | 有机物:蛋白质、多肽(200mg/L)葡萄糖(3.5mg/L)乳酸(3.15mg/L);氨基酸(1.45mg/L)尿素(2mg/L)丙酮酸(2mg/L) | ![]() |
| 无机物:水(98%~99%)氯离子(3.5g/L)钠离子(3.3g/L钾离子(0.2g/L)镁离子(0.04g/L)铁离子(3.5mg/L)钙离子(2mg/L)碳酸氢盐(107mg/L)硫酸盐(10mg/L)磷酸盐(1.4mg/L) | ||
| 皮脂腺(脂质) | 游离脂肪酸(37.6%)甘油三脂、胆固醇脂(25%)蜡脂(21%)角鲨烯(14.6%)胆固醇(3.8%) | ![]() |
| 顶分泌汗腺 | 有机物:蛋白质、胆固醇、类固醇 无机物:铁 | — |
Fig.9 Fluorescence images of probe Zn(tpy-NMe2) interacting with different substances in aqueous solution (a) (λex = 365 nm); High-resolution mass spectrum of the compound isolated from the mixture of probe Zn(tpy-NMe2) and oleic acid (b); Proposed mechanism diagram for latent fingerprint visualization by probe Zn(tpy-NMe2) (c) [61]
Fig.13 DMAc chemical structure(a), fluorescence lifetime(b), luminescence mechanism of different halogen substituents(c) and fluorescence images of DMAc Br(d)[68]
Fig.18 Schematic diagram of fingerprint development mechanism, operational procedure(spraying, immersion) (a) and visualization effects(b) of TPE pyridinium salts[79]
Fig.19 Schematic diagram of fingerprint development mechanism, operational procedure(atomization) (a) and visualization effects(b) of LFP-Yellow, LFP-Red[92]
| λEx/nm | 操作方法 | 显现效果 | 性能验证 | 指印质量评价 | 文献 |
|---|---|---|---|---|---|
| 365 | 刷显 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法 | [ |
| 365 | 刷显 | 三级特征,无背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法、特征标划法、系统特征匹配法 | [ |
| 365 | 浸泡/喷涂 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用、稳定性、安全性、对比度、灵敏度、选择性研究 | 灰度分析法 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干 | 指印样本未裁切,仅非渗透性客体适用研究,老化指纹显现研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 滴涂 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用性研究 | 特征标划法 人工特征匹配法 | [ |
| 365 | 浸泡、冲洗 | 三级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 喷洒 | 三级特征,无背景荧光干扰 | 指印样本未裁切,常见客体适用研究,老化指纹显现研究 | 灰度分析法 特征标划法 | [ |
| 365 | 滴涂 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征观察法 | [ |
| 365 | 浸泡 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用研究,老化指纹显现研究,灵敏度研究 | 灰度分析法、特征标划法、人工特征匹配法 | [ |
| 365 | 喷洒 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用、客体表面磨损干扰研究 | 特征标划法 | [ |
| 445 | 雾化 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用、快速性、接触DNA 影响研究 | 特征标划法 | [ |
| 365 | 浸泡/雾化 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用,水中指纹、老化指纹显现研究 | 灰度分析法、特征标划法、人工特征匹配法 | [ |
| 365 | 滴涂、冲洗 | 二级特征,部分三级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法、特征标划法、系统特征匹配法 | [ |
| 365 | 熏显、滴涂、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
Table 2 Overview of fingerprint development of AIE
| λEx/nm | 操作方法 | 显现效果 | 性能验证 | 指印质量评价 | 文献 |
|---|---|---|---|---|---|
| 365 | 刷显 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法 | [ |
| 365 | 刷显 | 三级特征,无背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法、特征标划法、系统特征匹配法 | [ |
| 365 | 浸泡/喷涂 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用、稳定性、安全性、对比度、灵敏度、选择性研究 | 灰度分析法 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干 | 指印样本未裁切,仅非渗透性客体适用研究,老化指纹显现研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 滴涂 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用性研究 | 特征标划法 人工特征匹配法 | [ |
| 365 | 浸泡、冲洗 | 三级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 喷洒 | 三级特征,无背景荧光干扰 | 指印样本未裁切,常见客体适用研究,老化指纹显现研究 | 灰度分析法 特征标划法 | [ |
| 365 | 滴涂 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征观察法 | [ |
| 365 | 浸泡 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用研究,老化指纹显现研究,灵敏度研究 | 灰度分析法、特征标划法、人工特征匹配法 | [ |
| 365 | 喷洒 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用、客体表面磨损干扰研究 | 特征标划法 | [ |
| 445 | 雾化 | 三级特征,有背景荧光干扰 | 指印样本未裁切,非渗透性客体适用、快速性、接触DNA 影响研究 | 特征标划法 | [ |
| 365 | 浸泡/雾化 | 三级特征,有背景荧光干扰 | 指印样本未裁切,常见客体适用,水中指纹、老化指纹显现研究 | 灰度分析法、特征标划法、人工特征匹配法 | [ |
| 365 | 滴涂、冲洗 | 二级特征,部分三级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
| 365 | 浸泡、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 灰度分析法、特征标划法、系统特征匹配法 | [ |
| 365 | 熏显、滴涂、冲洗 | 二级特征,有背景荧光干扰 | 指印样本未裁切,仅非渗透性客体适用研究 | 特征标划法 | [ |
Fig.24 Development results of sequentially stamped fingerprints on A4 paper using AIE-AT(A) Ink-stamped fingerprints (numbers in upper left corner indicate stamping sequence)[97]
| [1] | 罗亚平. 指纹显现及鉴定基础[M]. 北京: 中国人民公安大学出版社,2016. |
| Luo Y P. Fundamentals of Fingerprint Development and Identification[M]. Beijing: China People‘s Public Security University Press, 2016. | |
| [2] | Akiba N, Saitoh N, Kuroki K. Fluorescence spectra and images of latent fingerprints excited with a tunable laser in the ultraviolet region[J]. Journal of Forensic Sciences, 2007, 52(5): 1103-1106. |
| [3] | Thomas G L. The physics of fingerprints and their detection[J]. Journal of Physics E: Scientific Instruments, 1978,11(8): 722. |
| [4] | 梁帅, 高树辉, 郭凌杰. 基于聚集诱导发光技术的潜在指印显现[J]. 激光与光电子学进展, 2024, 61(15): 386-394. |
| Liang S, Gao S H, Guo L J. Latent fingerprint development based on aggregation-induced emission technology[J]. Laser & Optoelectronics Progress, 2024, 61(15): 386-394. | |
| [5] | Yu I H, Jou S, Chen C M, et al. Development of latent fingerprint by ZnO deposition[J]. Forensic Science International, 2011, 207(1/2/3): 14-18. |
| [6] | Jasuja O P, Singh G. Development of latent fingermarks on thermal paper: preliminary investigation into use of iodine fuming[J] Forensic Science International, 2009, 192(1/2/3): el1-16. |
| [7] | Sodhi G S, Kaur J. Powder method for detecting latent fingerprints: a review[J]. Forensic Science International, 2001, 120(3): 172-176. |
| [8] | 满瀚泽, 陈诺, 孙佳磊, 等. 飞行时间二次离子质谱在指纹分析中的研究进展[J].分析测试学报, 2024, 43(2): 338-350. |
| Man H Z, Chen N, Sun J L, et al. Research progress of time-of-flight secondary ion mass spectrometry in fingerprint analysis. Journal of Instrumental Analysis, 2024, 43(2): 338-350. | |
| [9] | Li S M, Zhou Y S, Zi Y L, et al. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy[J]. ACS Nano, 2016, 10(2): 2528-2535. |
| [10] | Su B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components[J]. Analytical and Bioanalytical Chemistry, 2016, 408(11): 2781-2791. |
| [11] | 徐静阳, 方少波, 周婧. 利用光谱和质谱成像技术实现指纹痕量检测[J]. 物理学报, 2019, 68(6): 7-16. |
| Xu J Y, Fang S B, Zhou J. Application of hyperspectral imaging and mass spectrometry imaging technique to fingerprint visualization and trace analysis[J]. Acta Physica Sinica, 2019, 68(6): 7-16. | |
| [12] | 林佳曼, 向平, 贠克明, 等. 成像技术在潜在指纹成分分析中的应用[J]. 中国司法鉴定, 2022(2): 22-34. |
| Lin J M, Xiang P, Yun K M, et al. Application of imaging technology in analysis of latent fingerprint components[J]. Chinese Journal of Forensic Sciences, 2022(2): 22-34. | |
| [13] | Cai L S, Xia M C, Wang Z Y, et al. Chemical visualization of sweat pores in fingerprints using GO-enhanced TOF-SIMS[J]. Analytical Chemistry, 2017, 89(16): 8372-8376. |
| [14] | 马榕蔚, 王猛, 李杰, 等. 二氧化钛包覆碳点的合成、表征及手印显现应用研究[J]. 光谱学与光谱分析, 2025, 45(5):1325-1333. |
| Ma R W, Wang M, Li J, et al. Synthesis, characterization, and application of titanium dioxide-coated carbon dots for fingerprint detection[J]. Spectroscopy and Spectral Analysis, 2025, 45(5): 1325–1333. | |
| [15] | Sharma S C. Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy[J]. Materials Chemistry and Physics, 2025, 329:130127. |
| [16] | Yuan C J, Wang M, Li M, et al. Focusing on the infrared region: a critical review of infrared-related materials and techniques for the development, imaging, and analysis of latent fingerprints[J]. TrAC Trends in Analytical Chemistry, 2024, 180: 117915. |
| [17] | 喻彦林. 纳米材料的快速绿色合成及其在潜指印显现中的应用[D]. 重庆: 重庆大学, 2018. |
| Yu Y L. Rapid green synthesis of nanomaterials and its application in latent fingerprint development [D]. Chongqing: Chongqing University, 2018. | |
| [18] | Yang Y, Liu R H, Cui Q L, et al. Red-emissive conjugated oligomer/silica hybrid nanoparticles with high affinity and application for latent fingerprint detection[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565: 118-130. |
| [19] | 王猛, 鞠金晟, 朱中旭, 等. 手印纳米荧光显现技术研究进展[J]. 中国科学: 化学, 2019, 49(12): 1425-1441. |
| Wang M, Ju J S, Zhu Z X, et al. Recent progress in nanomaterial-based fluorescent development of latent fingerprints[J]. Scientia Sinica Chimica, 2019, 49(12): 1425-1441. | |
| [20] | 刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J]. 发光学报, 2021, 42(8): 1095-1113. |
| Liu J, Zhang X R, Xiong H M. Application of fluorescent carbon dots in fingerprint detection[J]. Chinese Journal of Luminescence, 2021, 42(8): 1095-1113. | |
| [21] | 张弛. 用于油脂指纹和血指纹显现的荧光共轭聚合物的合成和应用研究[D]. 苏州: 苏州大学, 2021. |
| Zhang C. Synthesis and application of fluorescent conjugated polymers for oil fingerprint and blood fingerprint display[D]. Suzhou: Soochow University, 2021. | |
| [22] | Zhang X S, Zhang K Y, Xiao W, et al. Electrodeposited Ni/phosphors composite coating for latent fingerprints visualization[J]. International Journal of Electrochemical Science, 2019, 14(9): 9058-9068. |
| [23] | Sapstead R M, Corden N, Robert Hillman A. Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel[J]. Electrochimica Acta, 2015, 162: 119-128. |
| [24] | Luo J, Xie Z, Lam J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications, 2001(18): 1740-1741. |
| [25] | 郭凌杰, 高树辉. 基于表面能差异研究聚集诱导发光对潜在指印显现的影响[J]. 激光与光电子学进展, 2024, 61(15): 378-385. |
| Guo L J, Gao S H. Impact of aggregation-induced emission on latent fingerprint revelation based on surface energy differences[J]. Laser & Optoelectronics Progress, 2024, 61(15): 378-385. | |
| [26] | Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications[J]. Chemical Communications, 2009(29): 4332-4353 |
| [27] | 杨语. 有机荧光纳米材料的设计制备及其应用[D]. 北京: 北京科技大学, 2019. |
| Yang Y. Design, preparation and application of organic fluorescent nanomaterials[D]. Beijing: University of Science and Technology Beijing, 2019. | |
| [28] | Liang J, Tang B Z, Liu B. Specific light-up bioprobes based on AlEgen conjugates[J]. Chemical Society Reviews, 2015, 44(10): 2798-2811. |
| [29] | 赵跃智, 蔡敏敏, 钱妍, 等. 聚集诱导发光体系:化合物种类、发光机制及其应用[J]. 化学进展, 2013, 25(Z1): 296-321. |
| Zhao Y Z, Cai M M, Qian Y, et al. Aggregation-induced emission systems: compound categories, luminescence mechanisms and applications[J]. Progress in Chemistry, 2013, 25(Z1): 296-321. | |
| [30] | Zhang Y, Chen Y J, Li X, et al. Folic acid-functionalized AIE Pdots based on amphiphilic PCL-b-PEG for targeted cell imaging[J]. Polym Chem, 2014, 5(12): 3824-3830. |
| [31] | 常峥峰. 具有聚集诱导发光效应(AIE)的有机荧光材料的合成、表征及应用研究[D]. 杭州: 杭州师范大学, 2013. |
| Chang Z F. Synthesis, characterization and application of organic fluorescent materials with aggregation-induced luminescence (AIE)[D]. Hangzhou: Hangzhou Normal University, 2013. | |
| [32] | 陈思鸿, 许佳敏, 李月媚, 等. 基于有机小分子的聚集诱导猝灭(ACQ)-聚集诱导发射(AIE)转换研究进展[J]. 有机化学, 2022, 42(6): 1651-1666. |
| Chen S H, Xu J M, Li Y M, et al. Research Progress on aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) switching in organic small molecules[J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1651-1666. | |
| [33] | Wang X X, Ding Z Y, Ma Y, et al. Multi-stimuli responsive supramolecular gels based on a D-π-a structural cyanostilbene derivative with aggregation induced emission properties[J]. Soft Matter, 2019, 15(7): 1658-1665. |
| [34] | Li Y, Liu Y F, Li Q Q, et al. Novel NIR-Ⅱ organic fluorophores for bioimaging beyond 1550 nm[J]. Chemical Science, 2020, 11(10): 2621-2626. |
| [35] | 徐林. 多功能荧光探针的设计、合成与性能研究[D]. 上海: 华东理工大学, 2012. |
| Xu L. Design, synthesis and properties of multifunctional fluorescent probe[D]. Shanghai: East China University of Science and Technology, 2012. | |
| [36] | Padalkar V S, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters[J]. Chemical Society Reviews, 2016, 45(1): 169-202. |
| [37] | Song N, Zhang Z J, Liu P Y, et al. Nanomaterials with supramolecular assembly based on AIE luminogens for theranostic applications[J]. Advanced Materials, 2020, 32(49): 2004208. |
| [38] | Chen Y C, Lam J W Y, Kwok R T K, et al. Aggregation-induced emission: fundamental understanding and future developments[J]. Materials Horizons, 2019, 6(3): 428-433. |
| [39] | Masters B R. Molecular fluorescence:principles and applications[J]. Journal of Biomedical Optics, 2013, 18(3): 039901. |
| [40] | Zhao D Z, Zhang D H, Lam D J W Y, et al. Aggregation-induced emission: new vistas at the aggregate level[J]. Angewandte Chemie International Edition, 2020, 59(25): 9888-9907. |
| [41] | 梁帅, 郭凌杰. 聚集诱导雾化显现潜在指印综合实验教学设计[J]. 实验室研究与探索, 2024, 43(8): 198-204. |
| Liang S, Guo L J. Comprehensive experimental instructional design of latent fingerprint development by aggregation-induced atomization[J]. Research and Exploration in Laboratory, 2024, 43(8): 198-204. | |
| [42] | Guan J X, Shen C Z, Peng J, et al. What leads to aggregation-induced emission?[J]. The Journal of Physical Chemistry Letters, 2021, 12(17): 4218-4226. |
| [43] | Lakowicz J R. Principles of fluorescence spectroscopy[M]. Berlin: Springer, 2013: 1-236. |
| [44] | 张成. 新型聚集诱导发光小分子的设计合成及应用研究[D]. 南京: 南京理工大学, 2022. |
| Zhang C. Design, synthesis and application of novel aggregation-induced luminescence small molecules[D]. Nanjing: Nanjing University of Science and Technology, 2022. | |
| [45] | Chi Z G, Zhang X Q, Xu B J, et al. Recent advances in organic mechanofluorochromic materials[J]. Chemical Society Reviews, 2012, 41(10): 3878-3896. |
| [46] | Jiang J, Sun H F, Hu Y L, et al. AIE + ESIPT activity-based NIR Cu2+ sensor with dye participated binding strategy[J]. Chemical Communications, 2021, 57(62): 7685-7688. |
| [47] | Peng Z, Ji Y C, Huang Z H, et al. A strategy for the molecular design of aggregation-induced emission units further modified by substituents[J]. Materials Chemistry Frontiers, 2018, 2(6): 1175-1183. |
| [48] | Chen D D, Wang H, Dong L C, et al. The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells[J]. Biomaterials, 2016, 103: 67-74. |
| [49] | Hu R, Qin A J, Tang B Z. AIE polymers: synthesis and applications[J]. Progress in Polymer Science, 2020, 100: 101176. |
| [50] | Hazarika P, Russell DA. Advances in Fingerprint Technology, Second Edition[M]. Florida: Taylor and Francis CRC Press, 2010. |
| [51] | Ramotowaski R. Composition of Latent Print Residue[M]. 2nd. Boca Raton, USA: CRC Press, 2001. |
| [52] | Montagna W. Histology and cytochemistry of human skin[J]. Journal of Investiga-tive Dermatology, 1957, 20(6): 415-423. |
| [53] | Zhuang D G, Wen D Y, Lai D X, et al. Recent progress of advanced AIE materials for visualization of 3-level latent fingerprints[J]. ChemPhotoChem, 2024, 8(10): e202400104. |
| [54] | 李明, 倪龙, 王猛, 等. 手印纳米显现效果的评价研究进展[J]. 光谱学与光谱分析, 2021, 41(9): 2670-2680. |
| Li M, Ni L, Wang M, et al. Research progress in evaluation of nanomaterial-based fingerprint development techniques[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2670-2680. | |
| [55] | Kumar N, Basavaraj R B, Mahadevan K M, et al. Novel aggregation induced emission based 7-(diethylamino)-3-(4-nitrophenyl)-2H-chromen-2-one for forensic and OLEDs applications[J]. Applied Surface Science Advances, 2021, 5: 100095. |
| [56] | Kathiravan A, Narayanan M. Anthraldehyde-based aggregation induced emissive probe for hydroxylamine detection and latent fingerprint imaging[J]. Microchemical Journal, 2025, 208: 112573. |
| [57] | Wang Y L, Li C, Qu H Q, et al. Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission[J]. Journal of the American Chemical Society, 2020, 142(16): 7497-7505. |
| [58] | Zhang C, Fan Z N, Zhan H, et al. Fluorescent cationic conjugated polymer-based adaptive developing strategy for both sebaceous and blood fingerprints[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27419-27429. |
| [59] | Xu L R, Li Y, Li S H, et al. Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles[J]. The Analyst, 2014, 139(10): 2332-2335. |
| [60] | Jin X D, Xin R, Wang S F, et al. A tetraphenylethene-based dye for latent fingerprint analysis[J]. Sensors and Actuators B: Chemical, 2017, 244: 777-784. |
| [61] | Duan L X, Zheng Q S, Tu T. Instantaneous high-resolution visual imaging of latent fingerprints in water using color-tunable AIE pincer complexes[J]. Advanced Materials, 2022, 34(35): 2202540. |
| [62] | Ajayaghosh A. Donor-acceptor type low band gap polymers: polysquaraines and related systems[J]. Chemical Society Reviews, 2003, 32(4): 181-191. |
| [63] | Liu X D, Xu Y, Sun R, et al. A coumarin-indole-based near-infrared ratiometric pH probe for intracellular fluorescence imaging[J]. The Analyst, 2013, 138(21): 6542-6550. |
| [64] | Gayathri P, Subramaniyan S B, Veerappan A, et al. Knotting two donor–π-acceptor AIEgens using a nonconjugated linker: tunable and switchable fluorescence and fingerprinting and live cell imaging applications[J]. Crystal Growth & Design, 2021, 22(1): 633-642. |
| [65] | Zhao W J, He Z K, Tang B Z. Room-temperature phosphorescence from organic aggregates[J]. Nature Reviews Materials, 2020, 5: 869-885. |
| [66] | Parke S M, Rivard P E. Aggregation induced phosphorescence in the main group[J]. Israel Journal of Chemistry, 2018, 58(8): 915-926. |
| [67] | Feng H T, Zeng J J, Yin P G, et al. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects[J]. Nature Communications, 2020, 11(1): 2617 |
| [68] | Lv X L, Cao X S, Wu H, et al. Realize efficient organic afterglow from simple halogenated acridan derivatives[J]. Chemical Engineering Journal, 2021, 419: 129598. |
| [69] | Tian D, Zhu Z C, Xu L, et al. Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprint detection[J]. Materials Horizons, 2019, 6(6): 1215-1221. |
| [70] | Hu J H, Hou R X, Liu C, et al. Ultra-long room temperature phosphorescent materials based on tetraphenylethylene derivatives for anti-counterfeiting and encryption applications[J]. Chemical Engineering Journal, 2024, 491: 152177. |
| [71] | Qiu Z J, Hao B, Gu X G, et al. A general powder dusting method for latent fingerprint development based on AIEgens[J]. Science China Chemistry, 2018, 61(8): 966-970. |
| [72] | 李嘉玮. 聚集诱导发光指纹粉末的制备及其在MATLAB辅助潜指纹成像识别与匹配中的应用研究[D]. 深圳: 深圳大学, 2020. |
| Li J W. Preparation of aggregation-induced luminescence fingerprint powder and its application in MATLAB-assisted latent fingerprint imaging recognition and matching[D]. Shenzhen: Shenzhen University, 2020. | |
| [73] | Zhang Q N, Cui F Y, Dang X M, et al. Supramolecular sequential light-harvesting systems for constructing white LED device and latent fingerprint imaging[J]. Chemistry-A European Journal, 2024, 30(41): e202401426. |
| [74] | Li Y, Xu L R, Su B. Aggregation induced emission for the recognition of latent fingerprints[J]. Chemical Communications, 2012, 48(34): 4109-4111. |
| [75] | Jin X D, Wang H, Xin R, et al. An aggregation-induced emission luminogen combined with a cyanoacrylate Fuming method for latent fingerprint analysis[J]. The Analyst, 2020, 145(6): 2311-2318. |
| [76] | 金晓东, 唐镜宇, 陈伟, 等. 聚集诱导发光材料协同“502”熏显技术显现潜指纹的综合实验设计[J]. 实验室研究与探索, 2022, 41(4): 177-182. |
| Jin X D, Tang J Y, Chen W, et al. Designing of a comprehensive experiment based on aggregation induced emission material combined with cyanoacrylate Fuming technology for the latent fingerprints detection[J]. Research and Exploration in Laboratory, 2022, 41(4): 177-182. | |
| [77] | 金晓东, 倪岚清, 夏小围, 等. 含疏水链基四苯乙烯衍生物在潜指纹显现中的研究[J]. 中国司法鉴定, 2020(5): 50-53. |
| Jin X D, Ni L Q, Xia X W, et al. Research on the recognition of latent fingerprints based on the tetraphenyl ethylene derivativeimes[J]. Chinese Journal of Forensic Sciences, 2020(5): 50-53. | |
| [78] | Liang M W, Hu W, Zhao Y B, et al. Visualizing fingerprints on porous objects by an optical sensor minimally destructive to DNA based on aggregation-induced emission[J]. ChemistrySelect, 2023, 8(41): e202302186. |
| [79] | Liu D D, Wang M P, Han J C, et al. Endowing an amphiphilic aggregation-induced emission molecule with turn-on fluorescence in both latent fingerprints development and antibiotics detection[J]. Sensors and Actuators B: Chemical, 2024, 401: 135045. |
| [80] | Jin X D, Dong L B, Di X Y, et al. NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes[J]. RSC Advances, 2015, 5(106): 87306-87310. |
| [81] | Singh P, Singh H, Sharma R, et al. Diphenylpyrimidinone–salicylideneamine-new ESIPT based AIEgens with applications in latent fingerprinting[J]. Journal of Materials Chemistry C, 2016, 4(47): 11180-11189. |
| [82] | Liu R, Song Z M, Li Y H, et al. An AIPE-active heteroleptic Ir ( Ⅲ ) complex for latent fingermarks detection[J]. Sensors and Actuators B: Chemical, 2018, 259: 840-846. |
| [83] | Di L, Xing Y, Yang Z X, et al. Ultrabright AIE of Ir(Ⅲ) complexes achieving expeditious monitoring of oxygen and high-definition development of latent fingerprints[J]. Sensors and Actuators B: Chemical, 2022, 350: 130894. |
| [84] | Di L, Xing Y, Yang Z X, et al. Photostable aggregation-induced emission of iridium ( Ⅲ ) complex realizing robust and high-resolution imaging of latent fingerprints[J]. Sensors and Actuators B: Chemical, 2023, 375: 132898. |
| [85] | Li C C, Xu L H, Li J A, et al. Light-up, colorimetric anion sensing and fingerprint visualization using the salicylaldehyde-based aggregation-induced emission-active phosphorescent Pt ( Ⅱ ) complexes formed by restricting the molecular configuration transformations[J]. Dyes and Pigments, 2023, 209: 110912. |
| [86] | Li S F, Wang L, Ma Y Y, et al. A multifunctional fluorescent molecule with AIE characteristics for SO2 derivatives detection, fluorescence ink and latent fingerprint imaging[J]. Sensors and Actuators B: Chemical, 2022, 371: 132595. |
| [87] | 宋忠明, 庞玉东, 毛月圆, 等. 聚集诱导发光3-溴-5-吡唑甲酰胺类蓝光材料的潜指纹识别应用[J]. 精细化工, 2023, 40(6): 1302-1308. |
| Song Z M, Pang Y D, Mao Y Y, et al. Application of aggregation-induced emission 3-bromo-5-pyrazolecarboxamide blue-light materials in latent fingerprint recognition[J]. Fine Chemicals, 2023, 40(6): 1302-1308. | |
| [88] | Liu L J, Wang J J, Wang X X, et al. High-resolution imaging of latent fingerprints through near-infrared organoboron AIEgens[J]. Chinese Journal of Chemistry, 2023, 41(12): 1465-1470. |
| [89] | Yu L, Xu Y J, Kim J, et al. A rational design of AIE-active fluorophore for the fingerprint optical detection[J]. Bulletin of the Korean Chemical Society, 2023, 44(6): 516-522. |
| [90] | Chen Y, Li A S, Li X N, et al. Multi-stimuli-responsive amphiphilic pyridinium salt and its application in the visualization of level 3 details in latent fingerprints[J]. Advanced Materials, 2023, 35(20): 2211917. |
| [91] | 蒋钊, 孔兆宇, 乔瑞洁, 等. 双亲性噻吩羧酸衍生物的制备及潜指纹检测应用[J]. 精细化工, 2024, 41(9): 1925-1932. |
| Jiang Z, Kong Z Y, Qiao R J, et al. Preparation of amphiphilic thienyl carboxylic acid derivatives and application for latent fingerprint detection[J]. Fine Chemicals, 2024, 41(9): 1925-1932. | |
| [92] | Ruan N N, Qiu Q F, Wei X Q, et al. De novo green fluorescent protein chromophore-based probes for capturing latent fingerprints using a portable system[J]. Journal of the American Chemical Society, 2024, 146(3): 2072-2079. |
| [93] | Malik A H, Kalita A, Iyer P K. Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37501-37508. |
| [94] | Xiang X S, Zhou Z K, Feng H J, et al. Fine tuning of the electronic properties of novel BTPE using oligosilanyl linkages and their application in rapid high-resolution visualization of latent fingerprints[J]. CCS Chemistry, 2020, 2(3): 329-336. |
| [95] | Li Y H, Sun Y, Deng Y, et al. An AEE-active probe combined with cyanoacrylate Fuming for a high resolution fingermark optical detection[J]. Sensors and Actuators B: Chemical, 2019, 283: 99-106. |
| [96] | Liang S, Gao S H. Development research of latent fingermarks based on aggregation‐induced emission technique[J]. Journal of Forensic Sciences, 2024, 69(3): 856-868. |
| [97] | 郭凌杰, 高树辉, 梁帅, 等.基于时间分辨原位聚集诱导激活潜在指印成像研究[J]. 激光与光电子学进展, 2025, 62(2): 78-86. |
| Guo L J, Gao S H, Liang S, et al. Time-resolved in-situ aggregation-induced activation for latent fingerprint imaging[J]. Laser & Optoelectronics Progress, 2025, 62(2): 78-86. |
| [1] | Guangzheng ZHOU, Zihan ZHONG, Yanqun HUANG, Xuezhong WANG. Intelligent monitoring of crystallization processes based on in situ imaging and image analysis [J]. CIESC Journal, 2025, 76(9): 4351-4368. |
| [2] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [3] | Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models [J]. CIESC Journal, 2025, 76(9): 4369-4382. |
| [4] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [5] | Aqiang WU, Xiangqun ZHUGE, Tong LIU, Mingxing WANG, Kun LUO. Impact of nanoscale Prussian blue suspension electrolyte on the performance of lithium-oxygen batteries [J]. CIESC Journal, 2025, 76(8): 4310-4317. |
| [6] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [7] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [8] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [9] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [10] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [11] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [12] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [13] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [14] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| [15] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||