CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 707-717.DOI: 10.11949/0438-1157.20240738
• Separation engineering • Previous Articles
Xiangjun MENG1,2(), Linrui YANG1, Lipei PENG2, Xiankui YANG2, Yingxi HUA2, Renren ZHANG1, Kaitian ZHENG1, Chunjian XU1(
)
Received:
2024-07-01
Revised:
2024-08-16
Online:
2025-03-10
Published:
2025-03-25
Contact:
Chunjian XU
孟祥军1,2(), 杨林睿1, 彭立培2, 杨献奎2, 花莹曦2, 张人仁1, 郑凯天1, 许春建1(
)
通讯作者:
许春建
作者简介:
孟祥军(1979—),男,博士研究生,研究员,mengxiangjun@pericsg.com
基金资助:
CLC Number:
Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process[J]. CIESC Journal, 2025, 76(2): 707-717.
孟祥军, 杨林睿, 彭立培, 杨献奎, 花莹曦, 张人仁, 郑凯天, 许春建. 三氟化氮精馏分离流程的设计与控制[J]. 化工学报, 2025, 76(2): 707-717.
参数 | 公式或数据 | 单位 |
---|---|---|
冷凝器 | ||
传热系数UC | 0.852 | kW/(m2·K) |
换热温差ΔT | T塔顶-T冷冻剂 | K |
换热面积A | QC/(UC×ΔT) | m2 |
设备费用 | 7296×7.14×A0.65 | CNY |
再沸器 | ||
传热系数UR | 0.568 | kW/(m2·K) |
换热温差ΔT | T冷冻剂-T塔底 | K |
换热面积A | QR/(UR×ΔT) | m2 |
设备费用 | 7296×7.14×A0.65 | CNY |
塔设备 | ||
设备费用 | 17640×7.14×D1.066×L0.802 | CNY |
塔高L | 1.2×0.609×(理论板数-2) | m |
塔径D | 由Aspen的Column internals计算 | m |
能耗费用 | ||
冷冻剂(-75℃) | 298.5 | CNY/GJ |
冷冻剂(-150℃) | 963.9 | CNY/GJ |
冷冻剂(-175℃) | 1827.8 | CNY/GJ |
年能耗费用 | 8000×3600×QC×10-6×冷冻剂价格 | CNY/a |
Table 1 Formulas and parameters used in calculating ΔTAC
参数 | 公式或数据 | 单位 |
---|---|---|
冷凝器 | ||
传热系数UC | 0.852 | kW/(m2·K) |
换热温差ΔT | T塔顶-T冷冻剂 | K |
换热面积A | QC/(UC×ΔT) | m2 |
设备费用 | 7296×7.14×A0.65 | CNY |
再沸器 | ||
传热系数UR | 0.568 | kW/(m2·K) |
换热温差ΔT | T冷冻剂-T塔底 | K |
换热面积A | QR/(UR×ΔT) | m2 |
设备费用 | 7296×7.14×A0.65 | CNY |
塔设备 | ||
设备费用 | 17640×7.14×D1.066×L0.802 | CNY |
塔高L | 1.2×0.609×(理论板数-2) | m |
塔径D | 由Aspen的Column internals计算 | m |
能耗费用 | ||
冷冻剂(-75℃) | 298.5 | CNY/GJ |
冷冻剂(-150℃) | 963.9 | CNY/GJ |
冷冻剂(-175℃) | 1827.8 | CNY/GJ |
年能耗费用 | 8000×3600×QC×10-6×冷冻剂价格 | CNY/a |
组分 | 摩尔分数 | 常压沸点/℃ |
---|---|---|
H2 | 0.5×10-6 | -252.8 |
N2 | 0.511995 | -195.8 |
NF3 | 0.4853528 | -129.1 |
CF4 | 5×10-6 | -128.1 |
N2O | 0.002637 | -88.5 |
CO2 | 3.1×10-6 | -78.5 |
HF | 0.6×10-6 | 19.5 |
H2O | 6×10-6 | 100.0 |
Table 2 Feed composition of simulated processes and normal boiling points of components
组分 | 摩尔分数 | 常压沸点/℃ |
---|---|---|
H2 | 0.5×10-6 | -252.8 |
N2 | 0.511995 | -195.8 |
NF3 | 0.4853528 | -129.1 |
CF4 | 5×10-6 | -128.1 |
N2O | 0.002637 | -88.5 |
CO2 | 3.1×10-6 | -78.5 |
HF | 0.6×10-6 | 19.5 |
H2O | 6×10-6 | 100.0 |
参数 | 顺式分离序列流程 | 反式分离序列流程 | 热集成顺式分离序列流程 | 热集成反式分离序列流程 |
---|---|---|---|---|
冷凝器总负荷/kW | -44.1 | -43.8 | -31.6 | -26.1 |
再沸器总负荷/kW | 27.2 | 5.7 | 26.9 | 9.6 |
ΔTIC/万元 | 35.0 | 22.8 | 35.7 | 30.0 |
TOC/(万元/年) | 226.3 | 186.4 | 160.7 | 132.1 |
ΔTAC/(万元/年) | 238.5 | 194.2 | 172.1 | 142.1 |
Table 3 Comparison of processes
参数 | 顺式分离序列流程 | 反式分离序列流程 | 热集成顺式分离序列流程 | 热集成反式分离序列流程 |
---|---|---|---|---|
冷凝器总负荷/kW | -44.1 | -43.8 | -31.6 | -26.1 |
再沸器总负荷/kW | 27.2 | 5.7 | 26.9 | 9.6 |
ΔTIC/万元 | 35.0 | 22.8 | 35.7 | 30.0 |
TOC/(万元/年) | 226.3 | 186.4 | 160.7 | 132.1 |
ΔTAC/(万元/年) | 238.5 | 194.2 | 172.1 | 142.1 |
流程名称 | 塔名称 | 灵敏板位置 |
---|---|---|
顺式分离序列流程 | 脱轻塔 | 3 |
脱重塔 | 16 | |
热集成反式分离序列流程 | 脱重塔 | 11,13 |
脱轻塔 | 4 |
Table 4 Sensitivity stages for columns
流程名称 | 塔名称 | 灵敏板位置 |
---|---|---|
顺式分离序列流程 | 脱轻塔 | 3 |
脱重塔 | 16 | |
热集成反式分离序列流程 | 脱重塔 | 11,13 |
脱轻塔 | 4 |
控制器 | 增益常数 | 积分时间/min |
---|---|---|
流量控制器 | 0.5 | 0.3 |
压力控制器 | 20 | 9999 |
液位控制器 | 12 | 20 |
Table 5 Parameters of flow, pressure, and liquid level controllers
控制器 | 增益常数 | 积分时间/min |
---|---|---|
流量控制器 | 0.5 | 0.3 |
压力控制器 | 20 | 9999 |
液位控制器 | 12 | 20 |
流程 | 控制器 | 增益常数 | 积分时间/min |
---|---|---|---|
顺式分离序列 | TC1 | 82.71 | 7.92 |
TC2 | 33.33 | 5.28 | |
热集成反式分离序列 | TC1 | 137.29 | 9.24 |
TC2 | 21.29 | 5.28 | |
TC3 | 2.04 | 9.24 |
Table 6 Parameters of temperature controllers
流程 | 控制器 | 增益常数 | 积分时间/min |
---|---|---|---|
顺式分离序列 | TC1 | 82.71 | 7.92 |
TC2 | 33.33 | 5.28 | |
热集成反式分离序列 | TC1 | 137.29 | 9.24 |
TC2 | 21.29 | 5.28 | |
TC3 | 2.04 | 9.24 |
组分 | +10%组分扰动时 摩尔分数 | -10%组分扰动时 摩尔分数 |
---|---|---|
H2 | 0.5×10-6 | 0.5×10-6 |
N2 | 0.4637334 | 0.560284 |
NF3 | 0.5338881 | 0.4368175 |
CF4 | 5×10-6 | 5×10-6 |
N2O | 0.002377 | 0.002897 |
CO2 | 3.1×10-6 | 3.1×10-6 |
HF | 0.6×10-6 | 0.6×10-6 |
H2O | 6×10-6 | 6×10-6 |
Table 7 Feed composition with added component distribution
组分 | +10%组分扰动时 摩尔分数 | -10%组分扰动时 摩尔分数 |
---|---|---|
H2 | 0.5×10-6 | 0.5×10-6 |
N2 | 0.4637334 | 0.560284 |
NF3 | 0.5338881 | 0.4368175 |
CF4 | 5×10-6 | 5×10-6 |
N2O | 0.002377 | 0.002897 |
CO2 | 3.1×10-6 | 3.1×10-6 |
HF | 0.6×10-6 | 0.6×10-6 |
H2O | 6×10-6 | 6×10-6 |
7 | Tasaka A. Electrochemical synthesis and application of NF3 [J]. Journal of Fluorine Chemistry, 2007, 38(4): 296-310. |
8 | 周言, 钟强, 刘倩, 等. NF3与CF4分离纯化技术路线研究进展[J]. 应用化工, 2023, 52(1): 266-272. |
Zhou Y, Zhong Q, Liu Q, et al. Progress on technology route for separation and purification of NF3 and CF4 [J]. Applied Chemical Industry, 2023, 52(1): 266-272. | |
9 | 彭立培, 王少波, 李绍波, 等. 三氟化氮纯化方法进展[J]. 化学工业与工程, 2007, 24(1): 86-90, 94. |
Peng L P, Wang S B, Li S B, et al. Review on process for purifying nitrogen trifluoride[J]. Chemical Industry and Engineering, 2007, 24(1): 86-90, 94. | |
10 | 杜伟华. 三氟化氮萃取精馏工艺研究[J]. 低温与特气, 2009, 27(2): 14-17. |
Du W H. Study on NF3 extractive distillation process[J]. Low Temperature and Specialty Gases, 2009, 27(2): 14-17. | |
11 | Hassanalizadeh R, Nelson W M, Naidoo B K, et al. Purification of nitrogen trifluoride by physical separation[J]. Fluid Phase Equilibria, 2022, 560: 113405. |
12 | Zhang M H, Liu L, Li Q H, et al. Theoretical design of MOFs and PSA process for efficient separation of CF4/NF3 [J]. Industrial & Engineering Chemistry Research, 2023, 62(18): 7103-7113. |
13 | Branken D J, Krieg H M, Le Roux J P, et al. Separation of NF3 and CF4 using amorphous glassy perfluoropolymer Teflon AF and Hyflon AD60 membranes[J]. Journal of Membrane Science, 2014, 462: 75-87. |
14 | Flores O A, Cárdenas J C, Hernández S, et al. Thermodynamic analysis of thermally coupled distillation sequences[J]. Industrial & Engineering Chemistry Research, 2003, 42(23): 5940-5945. |
15 | Li Q, Finn A J, Doyle S J, et al. Synthesis and optimization of energy integrated advanced distillation sequences[J]. Separation and Purification Technology, 2023, 315: 123717. |
16 | Yang A, Su Y, Shi T, et al. Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation: entrainer design and process optimization[J]. Frontiers of Chemical Science and Engineering, 2022, 16(2): 303-315. |
1 | Ramachandran P V, Reddy G V. Preparative-scale one-pot syntheses of hexafluoro-1,3-butadiene[J]. Journal of Fluorine Chemistry, 2008, 129(5): 443-446. |
2 | Choi R, Onishi K, Kang C S, et al. Effects of deuterium anneal on MOSFETs with HfO2 gate dielectrics[J]. IEEE Electron Device Letters, 2003, 24(3): 144-146. |
3 | Miyazaki T, Mori I, Umezaki T, et al. NF3 synthesis using ClF3 as a mediator[J]. Journal of Fluorine Chemistry, 2019, 219: 55-61. |
4 | Yeom H J, Choi D H, Lee Y S, et al. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 064007. |
5 | Ianno N J, Greenberg K E, Verdeyen J T, et al. Comparison of the etching and plasma characteristics of discharges in CF4 and NF3 [J]. Journal of the Electrochemical Society, 1981, 128(10): 2174-2179. |
6 | 张振, 李梅, 李贤武, 等. 电解法制备NF3的研究现状[J]. 低温与特气, 2024, 42(2): 1-6. |
Zhang Z, Li M, Li X W, et al. Current status of NF3 preparation by electrolysis[J]. Low Temperature and Specialty Gases, 2024, 42(2): 1-6. | |
17 | Zhai J, Chen X, Sun X Q, et al. Economically and thermodynamically efficient pressure-swing distillation with heat integration and heat pump techniques[J]. Applied Thermal Engineering, 2023, 218: 119389. |
18 | Mao W X, Cao Y Q, Shen R C, et al. Heat integrated technology assisted pressure-swing distillation for the mixture of ethylene glycol and 1,2-butanediol[J]. Separation and Purification Technology, 2020, 241: 116740. |
19 | Shi T, Chun W, Yang A, et al. Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope[J]. Chemical Engineering Science, 2020, 215: 115373. |
20 | Huang J H, Chen Y X, Zhang Q J, et al. Dynamic control strategy of the ternary azeotrope separation process assisted by reactive-extractive distillation for ethyl acetate/isopropanol/water[J]. Chemical Engineering and Processing-Process Intensification, 2024, 199: 109762. |
21 | Feng Z M, Wang W H, Xu D, et al. Dynamic controllability of temperature difference control for the operation of double liquid-only side-stream distillation[J]. Computers & Chemical Engineering, 2022, 164: 107870. |
22 | Yang A, Shen W F, Wei S A, et al. Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes[J]. AIChE Journal, 2019, 65(4): 1281-1293. |
23 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill, 1998. |
24 | Luyben W L. Estimating refrigeration costs at cryogenic temperatures[J]. Computers & Chemical Engineering, 2017, 103: 144-150. |
25 | Luo H T, Liang K, Li W S, et al. Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/diisopropyl ether separation[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 15167-15182. |
26 | Shan B M, Sun D F, Zheng Q, et al. Dynamic control of the pressure-swing distillation process for THF/ethanol/water separation with and without thermal integration[J]. Separation and Purification Technology, 2021, 268: 118686. |
27 | Luyben W L. Distillation Design and Control Using Aspen Simulation[M]. 2nd ed. Hoboken: Wiley, 2013. |
28 | Luyben W L. Tuning proportional-integral-derivative controllers for integrator/deadtime processes[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3480-3483. |
[1] | Ju DONG, Liuyang YU, Shengzhe JIA, Lianjun SHI, Shihan WANG, Guotao HU, Weiwei TANG, Jingkang WANG, Junbo GONG. Current status and research progress of crystallization technology of electronic grade phosphoric acid [J]. CIESC Journal, 2025, 76(2): 438-453. |
[2] | Jiaxin CUI, Mengfan YIN, Tao ZHENG, Han LIU, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG. Application of aluminum-copper bimetallic ionic liquids in 1-hexene/n-hexane separation [J]. CIESC Journal, 2025, 76(2): 686-694. |
[3] | Xiaonan YOU, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Modeling method of depressurization separation process of the mixture of high-pressure polyethylene and supercritical ethylene [J]. CIESC Journal, 2025, 76(2): 695-706. |
[4] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[5] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
[6] | Zhi QIU, Ming TAN. Preparation of polyionic liquid membrane and its application in low-sodium and high-potassium healthy soy sauce [J]. CIESC Journal, 2024, 75(S1): 244-250. |
[7] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[8] | Xiaoqiao QIN, Hongbo TAN, Na WEN. Thermodynamic and economic analysis of air separation unit with energy storage and generation [J]. CIESC Journal, 2024, 75(7): 2409-2421. |
[9] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[10] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[11] | Songhong ZHANG, Xinyi ZHAO, Xiaoling LOU, Shaochuan SHEN, Junxian YUN. Separation of lactoperoxidase using cation exchange nano-cryogels [J]. CIESC Journal, 2024, 75(7): 2574-2582. |
[12] | Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors [J]. CIESC Journal, 2024, 75(6): 2262-2273. |
[13] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[14] | Yiqun LIU, Chao WANG, Chunxi LU. Relationship between simple distillation and equilibrium distillation in binary system [J]. CIESC Journal, 2024, 75(5): 1912-1919. |
[15] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
Viewed | ||||||
Full text 459
|
|
|||||
Abstract |
|
|||||