CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2274-2282.DOI: 10.11949/0438-1157.20240049
• Separation engineering • Previous Articles Next Articles
Yiqi ZHANG1,2(), Xuesong TAN2, Wuhuan LI1,2, Quan ZHANG2,3, Changlin MIAO2, Xinshu ZHUANG1,2(
)
Received:
2024-01-11
Revised:
2024-03-07
Online:
2024-07-03
Published:
2024-06-25
Contact:
Xinshu ZHUANG
张祎琪1,2(), 谭雪松2, 李吾环1,2, 张权2,3, 苗长林2, 庄新姝1,2(
)
通讯作者:
庄新姝
作者简介:
张祎琪(2000—),女,硕士研究生,2869039897@qq.com
基金资助:
CLC Number:
Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition[J]. CIESC Journal, 2024, 75(6): 2274-2282.
张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282.
温度/℃ | 酸度/(mol/L) | 时间/min | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 残渣保留率/% | 酶解率/% |
---|---|---|---|---|---|---|---|
70 | 0.05 | 60 | 97.89 | 1.06 | 3.41 | 95.23 | 18.89 |
90 | 0.05 | 60 | 92.72 | 28.16 | 22.77 | 78.09 | 29.73 |
110 | 0.05 | 60 | 90.47 | 76.70 | 90.33 | 48.54 | 72.79 |
130 | 0.05 | 60 | 87.04 | 100.00 | 92.68 | 40.17 | 76.15 |
Table 1 Effect and cellulose enzymatic digestibility of sugarcane bagasse after EPH pretreatment under different temperature
温度/℃ | 酸度/(mol/L) | 时间/min | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 残渣保留率/% | 酶解率/% |
---|---|---|---|---|---|---|---|
70 | 0.05 | 60 | 97.89 | 1.06 | 3.41 | 95.23 | 18.89 |
90 | 0.05 | 60 | 92.72 | 28.16 | 22.77 | 78.09 | 29.73 |
110 | 0.05 | 60 | 90.47 | 76.70 | 90.33 | 48.54 | 72.79 |
130 | 0.05 | 60 | 87.04 | 100.00 | 92.68 | 40.17 | 76.15 |
有机溶剂 | 催化剂 | 温度/℃ | 时间/min | 酶解率/% | 文献 |
---|---|---|---|---|---|
乙二醇苯醚 | 硫酸 | 110 | 60 | 89.71 | 本文 |
乙二醇苯醚/丙酮/水 | 硫酸 | 125 | 120 | 74.52 | [ |
60%乙醇 | FeCl3 | 160 | 60 | 93.80 | [ |
水/乙醇/乙酸乙酯/甲酸 | 甲酸 | 159 | 40 | 84.50 | [ |
甘油 | 硫酸 | 200 | 15 | 70.00 | [ |
Table 2 Comparison of enzymatic hydrolysis of sugarcane bagasse with different organic solvent pretreatment
有机溶剂 | 催化剂 | 温度/℃ | 时间/min | 酶解率/% | 文献 |
---|---|---|---|---|---|
乙二醇苯醚 | 硫酸 | 110 | 60 | 89.71 | 本文 |
乙二醇苯醚/丙酮/水 | 硫酸 | 125 | 120 | 74.52 | [ |
60%乙醇 | FeCl3 | 160 | 60 | 93.80 | [ |
水/乙醇/乙酸乙酯/甲酸 | 甲酸 | 159 | 40 | 84.50 | [ |
甘油 | 硫酸 | 200 | 15 | 70.00 | [ |
木质素结构单元和基本连接键 | CEL | EPHL |
---|---|---|
S/% | 30.78 | 20.96 |
G/% | 69.22 | 79.04 |
S/G | 0.445 | 0.265 |
β-O-4/% | 53.82 | 19.71 |
β-β/% | 7.12 | 4.41 |
Table 3 Semi-quantitative analysis of aromatic and aliphatic regions in the 2D HSQC NMR spectra of CEL and EPHL
木质素结构单元和基本连接键 | CEL | EPHL |
---|---|---|
S/% | 30.78 | 20.96 |
G/% | 69.22 | 79.04 |
S/G | 0.445 | 0.265 |
β-O-4/% | 53.82 | 19.71 |
β-β/% | 7.12 | 4.41 |
1 | Liu W, Ning C X, Li Z, et al. Revealing structural features of lignin macromolecules from microwave-assisted carboxylic acid-based deep eutectic solvent pretreatment[J]. Industrial Crops and Products, 2023, 194: 116342. |
2 | Shen G N, Yuan X C, Cheng Y, et al. Densification pretreatment with a limited deep eutectic solvent triggers high-efficiency fractionation and valorization of lignocellulose[J]. Green Chemistry, 2023, 25(20): 8026-8039. |
3 | Constant S, Wienk H L J, Frissen A E, et al. New insights into the structure and composition of technical lignins: a comparative characterisation study[J]. Green Chemistry, 2016, 18(9): 2651-2665. |
4 | Zeng Y N, Zhao S, Yang S H, et al. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels[J]. Current Opinion in Biotechnology, 2014, 27: 38-45. |
5 | Madadi M, Elsayed M, Song G J, et al. Biphasic lignocellulose fractionation for staged production of cellulose nanofibers and reactive lignin nanospheres: a comparative study on their microstructures and effects as chitosan film reinforcing[J]. Chemical Engineering Journal, 2023, 465: 142881. |
6 | Zhu J J, Zhang H, Jiao N X, et al. Fractionation of poplar using hydrothermal and acid hydrotropic pretreatments for co-producing xylooligosaccharides, fermentable sugars, and lignin nanoparticles[J]. Industrial Crops and Products, 2022, 181: 114853. |
7 | Rajan K, Kim K, Elder T J, et al. Ionic-liquid-assisted fabrication of lignocellulosic thin films with tunable hydrophobicity[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8835-8845. |
8 | Wu R J, Li Y Z, Wang X D, et al. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment[J]. Bioresource Technology, 2023, 369: 128410. |
9 | Han S M, Wang R Z, Wang K, et al. Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment[J]. Bioresource Technology, 2022, 363: 127905. |
10 | Tsegaye B, Balomajumder C, Roy P. Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production[J]. Renewable Energy, 2020, 148: 923-934. |
11 | Wang B, Sun D, Wang H M, et al. Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2658-2666. |
12 | Smit A, Huijgen W. Effective fractionation of lignocellulose in herbaceous biomass and hardwood using a mild acetone organosolv process[J]. Green Chemistry, 2017, 19(22): 5505-5514. |
13 | Zhang Q, Dai C X, Tan X S, et al. Biphasic fractionation of lignocellulosic biomass based on the combined action of pretreatment severity and solvent effects on delignification[J]. Bioresource Technology, 2023, 369: 128477. |
14 | Chen J Z, Tan X S, Miao C L, et al. A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system[J]. Bioresource Technology, 2021, 342: 125963. |
15 | Meng X Z, Pu Y Q, Li M, et al. A biomass pretreatment using cellulose-derived solvent Cyrene[J]. Green Chemistry, 2020, 22(9): 2862-2872. |
16 | Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory analytical procedure, 2008, 1617(1): 1-15. |
17 | Salem K S, Kasera N K, Rahman M A, et al. Comparison and assessment of methods for cellulose crystallinity determination[J]. Chemical Society Reviews, 2023, 52(18): 6417-6446. |
18 | Ioelovich M, Morag E. Effect of cellulose structure on enzymatic hydrolysis[J]. BioResources, 2011, 6(3): 2818-2835. |
19 | Li W H, Tan X S, Miao C L, et al. Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production[J]. Green Chemistry, 2023, 25(3): 1169-1178. |
20 | Zhang H D, Zhang S S, Yuan H Y, et al. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time[J]. Bioresource Technology, 2018, 249: 395-401. |
21 | Suriyachai N, Champreda V, Kraikul N, et al. Fractionation of lignocellulosic biopolymers from sugarcane bagasse using formic acid-catalyzed organosolv process[J]. 3 Biotech, 2018, 8(5): 221. |
22 | Pascal K, Ren H Y, Sun F F, et al. Mild acid-catalyzed atmospheric glycerol organosolv pretreatment effectively improves enzymatic hydrolyzability of lignocellulosic biomass[J]. ACS Omega, 2019, 4(22): 20015-20023. |
23 | Jeong S Y, Lee J W. Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology[J]. Industrial Crops and Products, 2016, 79: 1-6. |
24 | Li S X, Li M F, Yu P, et al. Valorization of bamboo by γ - v a l e r o l a c t o n e / a c i d / w a t e r to produce digestible cellulose, degraded sugars and lignin[J]. Bioresource Technology, 2017, 230: 90-96. |
25 | Song G J, Sun C H, Hu Y, et al. Construction of anhydrous two-step organosolv pretreatment of lignocellulosic biomass for efficient lignin membrane-extraction and solvent recovery[J]. Journal of Physics: Energy, 2023, 5(1): 014015. |
26 | Pan Z Y, Liu X Y, Zhang Z Y, et al. Low-temperature pretreatment by AlCl3-catalyzed 1,4-butanediol solution for producing ‘ideal' lignin with super-high content of β-O-4 linkages[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 6): 127306. |
27 | del Río J C, Lino A G, Colodette J L, et al. Differences in the chemical structure of the lignins from sugarcane bagasse and straw[J]. Biomass and Bioenergy, 2015, 81: 322-338. |
28 | Nge T T, Tobimatsu Y, Takahashi S, et al. Isolation and characterization of polyethylene glycol (PEG)-modified glycol lignin via PEG solvolysis of softwood biomass in a large-scale batch reactor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7841-7848. |
29 | Fan D, Xie X Y, Li C X, et al. Extraction of noncondensed lignin from poplar sawdusts with p-toluenesulfonic acid and ethanol[J]. Journal of Agricultural and Food Chemistry, 2021, 69(37): 10838-10847. |
30 | Wu Y L, Cheng J R, Yang Q, et al. Solid acid facilitated deep eutectic solvents extraction of high-purity and antioxidative lignin production from poplar wood[J]. International Journal of Biological Macromolecules, 2021, 193(Pt A): 64-70. |
31 | Zijlstra D S, de Santi A, Oldenburger B, et al. Extraction of lignin with high β-O-4 content by mild ethanol extraction and its effect on the depolymerization yield[J]. Journal of Visualized Experiments, 2019(143): 30663678. |
32 | Varanasi P, Singh P, Arora R, et al. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment[J]. Bioresource Technology, 2012, 126: 156-161. |
33 | Shen X J, Wen J L, Mei Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization[J]. Green Chemistry, 2019, 21(2): 275-283. |
34 | Ji H R, Song Y L, Zhang X, et al. Using a combined hydrolysis factor to balance enzymatic saccharification and the structural characteristics of lignin during pretreatment of hybrid poplar with a fully recyclable solid acid[J]. Bioresource Technology, 2017, 238: 575-581. |
35 | Suzuki K, Katayama K, Sumii Y, et al. Vibrational analysis of acetylcholine binding to the M2 receptor[J]. RSC Advances, 2021, 11(21): 12559-12567. |
36 | Yao L, Yoo C G, Meng X Z, et al. A structured understanding of cellobiohydrolase Ⅰ binding to poplar lignin fractions after dilute acid pretreatment[J]. Biotechnology for Biofuels, 2018, 11: 96. |
37 | Madadi M, Bakr M M A, Song G J, et al. Co-production of levulinic acid and lignin adsorbent from aspen wood with combination of liquid hot water and green-liquor pretreatments[J]. Journal of Cleaner Production, 2022, 366: 132817. |
38 | Madadi M, Zahoor, Song G J, et al. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability[J]. Bioresource Technology, 2022, 359: 127503. |
[1] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[4] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[7] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[8] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[11] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[12] | Qian WANG, Shenyong LI, Shuai KANG, Wei PANG, Longlong HAO, Shenjun QIN. Research progress of pretreatment technology for efficient utilization of coal ash [J]. CIESC Journal, 2023, 74(3): 1010-1032. |
[13] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[14] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[15] | Haonan CHEN, Xiaohong HU, Longlong MA, Qi ZHANG. Study of typical chemical cleavage during catalytic oxidation of lignin [J]. CIESC Journal, 2023, 74(11): 4367-4382. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||