CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2262-2273.DOI: 10.11949/0438-1157.20240088
• Separation engineering • Previous Articles Next Articles
Zongwei HUO(), Yabin NIU, Yanqiu PAN(
)
Received:
2024-01-18
Revised:
2024-02-29
Online:
2024-07-03
Published:
2024-06-25
Contact:
Yanqiu PAN
通讯作者:
潘艳秋
作者简介:
霍宗伟(1999—),男,硕士研究生,hzw_dut0402@163.com
基金资助:
CLC Number:
Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors[J]. CIESC Journal, 2024, 75(6): 2262-2273.
霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273.
体系分类 | 自扩散系数/(m2/s) | 动力黏度/(mPa·s) | 界面张力/(mN/m) |
---|---|---|---|
水[ | 2.30×10-9 | 0.89 | — |
油 | 2.02×10-11 | 136.14 | — |
油-水 | — | — | 8.9654 |
油-水-CTAB | — | — | 0.2746 |
油-水-SDS | — | — | 0.3261 |
油-水-SLS | — | — | 1.7496 |
油-水-Tween-80 | — | — | 7.6272 |
Table 1 Experimental results of physical property parameters
体系分类 | 自扩散系数/(m2/s) | 动力黏度/(mPa·s) | 界面张力/(mN/m) |
---|---|---|---|
水[ | 2.30×10-9 | 0.89 | — |
油 | 2.02×10-11 | 136.14 | — |
油-水 | — | — | 8.9654 |
油-水-CTAB | — | — | 0.2746 |
油-水-SDS | — | — | 0.3261 |
油-水-SLS | — | — | 1.7496 |
油-水-Tween-80 | — | — | 7.6272 |
名称 | DPD无量纲符号 | DPD无量纲单位 | 实际值 |
---|---|---|---|
质量 | m | 1 | 1.14×10-24 kg |
长度 | rc、x、z、…… | 1 | 1.5066×10-9 m |
温度 | Θ | 1 (kBT) | 298 K |
能量 | E | 1 (kBT) | 4.1164×10-21 J |
时间 | t | 1 (rc(m/E)1/2) | 25.0266 ps |
速度 | v | 1 (1/(m/E)1/2) | 60.1999 m/s |
剪切速率 | G | 1 (1/t) | 0.03996 ps-1 |
Table 2 DPD dimensionless units and corresponding actual values
名称 | DPD无量纲符号 | DPD无量纲单位 | 实际值 |
---|---|---|---|
质量 | m | 1 | 1.14×10-24 kg |
长度 | rc、x、z、…… | 1 | 1.5066×10-9 m |
温度 | Θ | 1 (kBT) | 298 K |
能量 | E | 1 (kBT) | 4.1164×10-21 J |
时间 | t | 1 (rc(m/E)1/2) | 25.0266 ps |
速度 | v | 1 (1/(m/E)1/2) | 60.1999 m/s |
剪切速率 | G | 1 (1/t) | 0.03996 ps-1 |
液相类型 | Nm_par | s | γ | rc |
---|---|---|---|---|
水相 | 4 | 0.25 | 20 | 1.0 |
油相 | 4 | 0.25 | 2650 | 1.0 |
油水相间 | 4 | 0.25 | 39.7 | 1.0 |
Table 3 Results of DPD simulation parameters
液相类型 | Nm_par | s | γ | rc |
---|---|---|---|---|
水相 | 4 | 0.25 | 20 | 1.0 |
油相 | 4 | 0.25 | 2650 | 1.0 |
油水相间 | 4 | 0.25 | 39.7 | 1.0 |
珠子类型 | T-H | T | T-T | O | W | N | NA | S1 | S2 | BR | TIO |
---|---|---|---|---|---|---|---|---|---|---|---|
T-H | 98.85 | ||||||||||
T | 123.97 | 132.10 | |||||||||
T-T | 118.01 | 134.73 | 105.28 | ||||||||
O | 125.59 | 86.69 | 95.60 | 86.20 | |||||||
W | 136.98 | 153.27 | 145.08 | 197.24 | 104.00 | ||||||
N | 49.48 | 130.75 | 29.33 | 126.02 | 8.13 | 265.32 | |||||
NA | 33.78 | 160.55 | 35.40 | 131.10 | 55.69 | 261.00 | 276.54 | ||||
S1 | 31.69 | 145.39 | 56.42 | 145.89 | 36.07 | 0 | 0 | 239.10 | |||
S2 | 41.82 | 150.08 | 63.15 | 166.39 | 65.43 | 0 | 0 | 246.92 | 259.00 | ||
BR | 63.96 | 165.04 | 83.17 | 241.39 | 101.53 | 0 | 0 | 251.53 | 259.31 | 351.76 | |
TIO | 108.18 | 162.72 | 141.61 | 196.84 | 66.70 | 63.80 | 138.58 | 13.02 | 10.59 | 168.58 | 0 |
Table 4 Conservative force parameters including electrostatic interactions between beads
珠子类型 | T-H | T | T-T | O | W | N | NA | S1 | S2 | BR | TIO |
---|---|---|---|---|---|---|---|---|---|---|---|
T-H | 98.85 | ||||||||||
T | 123.97 | 132.10 | |||||||||
T-T | 118.01 | 134.73 | 105.28 | ||||||||
O | 125.59 | 86.69 | 95.60 | 86.20 | |||||||
W | 136.98 | 153.27 | 145.08 | 197.24 | 104.00 | ||||||
N | 49.48 | 130.75 | 29.33 | 126.02 | 8.13 | 265.32 | |||||
NA | 33.78 | 160.55 | 35.40 | 131.10 | 55.69 | 261.00 | 276.54 | ||||
S1 | 31.69 | 145.39 | 56.42 | 145.89 | 36.07 | 0 | 0 | 239.10 | |||
S2 | 41.82 | 150.08 | 63.15 | 166.39 | 65.43 | 0 | 0 | 246.92 | 259.00 | ||
BR | 63.96 | 165.04 | 83.17 | 241.39 | 101.53 | 0 | 0 | 251.53 | 259.31 | 351.76 | |
TIO | 108.18 | 162.72 | 141.61 | 196.84 | 66.70 | 63.80 | 138.58 | 13.02 | 10.59 | 168.58 | 0 |
体系分类 | 实验值/ (mN/m) | 模拟值/ (mN/m) | 相对 误差/% |
---|---|---|---|
油-水 | 8.9654 | 9.6743 | 7.91 |
油-水-CTAB | 0.2746 | 0.2539 | 7.54 |
油-水-SDS | 0.3261 | 0.3815 | 16.99 |
油-水-SLS | 1.7496 | 1.6540 | 5.46 |
油-水-Tween-80 | 7.6272 | 6.7254 | 11.82 |
Table 5 Experimental and simulated results of interfacial tension
体系分类 | 实验值/ (mN/m) | 模拟值/ (mN/m) | 相对 误差/% |
---|---|---|---|
油-水 | 8.9654 | 9.6743 | 7.91 |
油-水-CTAB | 0.2746 | 0.2539 | 7.54 |
油-水-SDS | 0.3261 | 0.3815 | 16.99 |
油-水-SLS | 1.7496 | 1.6540 | 5.46 |
油-水-Tween-80 | 7.6272 | 6.7254 | 11.82 |
OD3位置 | θ12/(°) | θ23/(°) | 中间行为 | 影响阶段 | 区域和易聚并程度① | |
---|---|---|---|---|---|---|
三油滴对照组 | 25.36 | 30.28 | OD2-OD3先排液、先碰撞 | 油滴间排液阶段(Ⅰ) | A(++) | |
Δz32_0改变 | 0.9R1 | 30.34 | 27.74 | OD1-OD2先排液,OD2-OD3先碰撞 | A(+++) | |
0.8R1 | 30.68 | 20.97 | B(+) | |||
0.7R1 | 39.28 | 19.29 | OD1-OD2碰撞前中程时OD2-OD3碰撞 | 油滴碰撞阶段(Ⅱ-1) | A(++) | |
Δx32_0改变 | -5.25R1 | 39.01 | 28.59 | A(++++) | ||
-5.50R1 | 55.31 | 20.84 | A(+++) | |||
-5.75R1 | 81.14 | 18.87 | OD1-OD2碰撞后程时OD2-OD3碰撞 | 油滴逃离阶段(Ⅱ-2) | B(+) | |
-6.00R1 | 93.82 | 18.35 | B(+) |
Table 6 Oil droplet behavior results when Δz32_0 and Δx32_0 change
OD3位置 | θ12/(°) | θ23/(°) | 中间行为 | 影响阶段 | 区域和易聚并程度① | |
---|---|---|---|---|---|---|
三油滴对照组 | 25.36 | 30.28 | OD2-OD3先排液、先碰撞 | 油滴间排液阶段(Ⅰ) | A(++) | |
Δz32_0改变 | 0.9R1 | 30.34 | 27.74 | OD1-OD2先排液,OD2-OD3先碰撞 | A(+++) | |
0.8R1 | 30.68 | 20.97 | B(+) | |||
0.7R1 | 39.28 | 19.29 | OD1-OD2碰撞前中程时OD2-OD3碰撞 | 油滴碰撞阶段(Ⅱ-1) | A(++) | |
Δx32_0改变 | -5.25R1 | 39.01 | 28.59 | A(++++) | ||
-5.50R1 | 55.31 | 20.84 | A(+++) | |||
-5.75R1 | 81.14 | 18.87 | OD1-OD2碰撞后程时OD2-OD3碰撞 | 油滴逃离阶段(Ⅱ-2) | B(+) | |
-6.00R1 | 93.82 | 18.35 | B(+) |
1 | Liang B, He X, Hou J J, et al. Membrane separation in organic liquid: technologies, achievements, and opportunities[J]. Advanced Materials, 2019, 31(45): e1806090. |
2 | Zhao G J, Han W J, Dong L L, et al. Sprayed separation membranes: a systematic review and prospective opportunities[J]. Green Energy & Environment, 2022, 7(6): 1143-1160. |
3 | Guiga W F, Lameloise M L. Membrane separation in food processing[M]//Green Food Processing Techniques. Amsterdam: Elsevier, 2019: 245-287. |
4 | Sirkar K K. Application of membrane technologies in the pharmaceutical industry[J]. Current Opinion in Drug Discovery & Development, 2000, 3(6): 714-722. |
5 | Jawad J, Hawari A H, Javaid Zaidi S. Artificial neural network modeling of wastewater treatment and desalination using membrane processes: a review[J]. Chemical Engineering Journal, 2021, 419: 129540. |
6 | Sutrisna P D, Kurnia K A, Siagian U W R, et al. Membrane fouling and fouling mitigation in oil-water separation: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107532. |
7 | Megias-Alguacil D, Feigl K, Dressler M, et al. Droplet deformation under simple shear investigated by experiment, numerical simulation and modeling[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 126(2/3): 153-161. |
8 | Vananroye A, van Puyvelde P, Moldenaers P. Effect of confinement on the steady-state behavior of single droplets during shear flow[J]. Journal of Rheology, 2007, 51(1): 139-153. |
9 | de Bruyn P, Chen D J, Moldenaers P, et al. The effects of geometrical confinement and viscosity ratio on the coalescence of droplet pairs in shear flow[J]. Journal of Rheology, 2014, 58(6): 1955-1980. |
10 | 桑义敏, 陈家庆, 易国庆, 等. 水包油型乳化液油滴的管内节流破碎行为与机理[J]. 过程工程学报, 2015, 15(6): 940-944. |
Sang Y M, Chen J Q, Yi G Q, et al. Break-up behaviors and mechanism of oil-in-water emulsion droplets through a pipe restriction[J]. The Chinese Journal of Process Engineering, 2015, 15(6): 940-944. | |
11 | Li X Q, Fan Y Z, Liu R Q, et al. Numerical investigation of oil droplets motion in water using LBM[J]. Process Safety and Environmental Protection, 2021, 147: 965-971. |
12 | Hafsi Z, Elaoud S, Mishra M, et al. Numerical study of droplets coalescence in an oil-water separator[C]//Advances in Mechanical Engineering, Materials and Mechanics: Selected contributions from the 7th International Conference on Advances in Mechanical Engineering and Mechanics. Hammamet, Tunisia: Springer International Publishing, 2021: 449-454. |
13 | Zhang Y Z, Xu J B, He X F. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics[J]. Molecular Physics, 2018, 116(14): 1851-1861. |
14 | Pan D Y, Lin Y Q, Zhang L X, et al. Motion and deformation of immiscible droplet in plane Poiseuille flow at low Reynolds number[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(4): 702-708. |
15 | Gao S J, Sun J C, Liu P P, et al. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property[J]. Advanced Materials, 2016, 28(26): 5307-5314. |
16 | Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhysics Letters, 1992, 19: 155. |
17 | Español P, Warren P. Statistical mechanics of dissipative particle dynamics[J]. Europhysics Letters, 1995, 30(4): 191-196. |
18 | 张雪芳, 潘艳秋, 陈鹏鹏, 等. 乳化剂对动态膜分离油水乳化液过程的影响[J]. 化工进展, 2019, 38(2): 790-797. |
Zhang X F, Pan Y Q, Chen P P, et al. Impact of emulsifier on separation of oil-in-water emulsion by dynamic membrane[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 790-797. | |
19 | 王世荣, 李祥高, 刘东志, 等. 表面活性剂化学[M]. 2版. 北京: 化学工业出版社, 2010. |
Wang S R, Li X G, Liu D Z. Surfactant Chemistry[M]. 2nd ed. Beijing: Chemical Industry Press, 2010. | |
20 | Harris K R, Woolf L A. Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980, 76: 377. |
21 | Huber M L, Perkins R A, Laesecke A, et al. New international formulation for the viscosity of H2O[J]. Journal of Physical and Chemical Reference Data, 2009, 38(2): 101-125. |
22 | Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophysical Journal, 2001, 81(2): 725-736. |
23 | Liu J, Zheng Z J, Li F Z, et al. Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile[J]. Nano Energy, 2016, 28: 87-96. |
24 | Goodarzi F, Zendehboudi S. Effects of salt and surfactant on interfacial characteristics of water/oil systems: molecular dynamic simulations and dissipative particle dynamics[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8817-8834. |
25 | Groot R D, Warren P B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. The Journal of Chemical Physics, 1997, 107(11): 4423-4435. |
26 | Gidituri H, Akella V S, Vedantam S, et al. Phase separation in binary fluid mixtures with symmetric and asymmetric Schmidt numbers: a DPD study[J]. The Journal of Chemical Physics, 2019, 150(23): 234903. |
27 | Krafnick R C, García A E. Efficient Schmidt number scaling in dissipative particle dynamics[J]. The Journal of Chemical Physics, 2015, 143(24): 243106. |
28 | Boromand A, Jamali S, Maia J M. Viscosity measurement techniques in dissipative particle dynamics[J]. Computer Physics Communications, 2015, 196: 149-160. |
29 | Thompson A P, Aktulga H M, Berger R, et al. LAMMPS — a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. |
30 | Lauriello N, Kondracki J, Buffo A, et al. Simulation of high Schmidt number fluids with dissipative particle dynamics: parameter identification and robust viscosity evaluation[J]. Physics of Fluids, 2021, 33(7): 073106. |
31 | Pivkin I V, Karniadakis G E. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems[J]. The Journal of Chemical Physics, 2006, 124(18): 184101. |
32 | Vishnyakov A, Neimark A V. Self-assembly in Nafion membranes upon hydration: water mobility and adsorption isotherms[J]. The Journal of Physical Chemistry B, 2014, 118(38): 11353-11364. |
33 | Visser D C, Hoefsloot H C J, Iedema P D. Modelling multi-viscosity systems with dissipative particle dynamics[J]. Journal of Computational Physics, 2006, 214(2): 491-504. |
34 | Sepehr F, Paddison S J. Dissipative particle dynamics interaction parameters from ab initio calculations[J]. Chemical Physics Letters, 2016, 645: 20-26. |
[1] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[2] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[3] | Guangyao ZHAO, Minglei YANG, Feng QIAN. Variance reduction sampling strategy-based stochastic reconstruction method [J]. CIESC Journal, 2024, 75(5): 1939-1950. |
[4] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[5] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[6] | Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle [J]. CIESC Journal, 2024, 75(5): 2047-2059. |
[7] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[8] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[9] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[10] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[11] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[12] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[13] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[14] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[15] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||