CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1288-1296.DOI: 10.11949/0438-1157.20240943

• Energy and environmental engineering • Previous Articles     Next Articles

Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank

Wenlong JIA1(), Huan XIAO1, Xiangyu LENG2, Qiaojing HUANG1, Chengwei LIU3, Xia WU1   

  1. 1.College of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2.Institute of Safety, Environmental Protection and Technical Supervision,Petro China Southwest Oil & Gasfield Company, Chengdu 610041, Sichuan, China
    3.Sichuan Huayou Group Corporation Limited,PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, Sichuan, China
  • Received:2024-08-21 Revised:2024-11-05 Online:2025-03-28 Published:2025-03-25
  • Contact: Wenlong JIA

原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟

贾文龙1(), 肖欢1, 冷翔宇2, 黄巧竞1, 刘程玮3, 吴瑕1   

  1. 1.西南石油大学石油与天然气工程学院,四川 成都 610500
    2.中国石油西南油气田分公司安全环保与 技术监督研究院,四川 成都 610041
    3.中国石油西南油气田分公司华油公司,四川 成都 610051
  • 通讯作者: 贾文龙
  • 作者简介:贾文龙(1986—),男,博士,教授,jiawenlong08@126.com
  • 基金资助:
    国家自然科学基金面上项目(52274065)

Abstract:

The mechanism of ultrasonic cavitation microjet cleaning for heavy crude oil deposition is unclear. The clean effects of microjet flow on depositions lack quantitative characterization. A simulation model is developed for cleaning heavy depositions using ultrasonic cavitation microjet impact. The cleaning mechanism and rules of ultrasonic cavitation microjets on depositions are investigated through numerical simulations and experiments. The results indicate that the effects of the microjet caused the formation of circular pits on the surface of the depositions. Expansive cracks appear inside the sediment and at the wall adhesion, which promotes the separation of the sediment. After ultrasonic cavitation experiments, non-uniform cavitation pits appeared on the surface of the depositions, with pit diameters following a GEVⅡ distribution. The diameter and depth of pits on the surface of depositions exhibit linear increases with ultrasonic pressure. The effect of ultrasonic pressure on the depth of pits is significantly greater than its impact on the diameter. The ultrasonic power has been increased from 100 W to 300 W, resulting in an elevation of the ultrasonic pressure from 100 kPa to 200 kPa. The experimental findings demonstrate a rise in the average cavitation pit diameter from 6.10 μm to 7.38 μm, and an increase in the average depth from 1.18 μm to 3.46 μm when subjected to duration of 60 s under the ultrasonic cation. Similarly, the diameter of the pit is increased from 9.60 μm to 9.80 μm, the average depth is increased from 1.42 μm to 3.89 μm in the numerical simulation.

Key words: petroleum, deposition, ultrasonic, cavitation, microjet, cleaning, numerical simulation

摘要:

针对原油重质沉积物超声波空化微射流清洗作用机理不明确、微射流对沉积物的冲击作用缺乏定量表征等问题,建立了超声波空化微射流冲击清洗重质沉积物的仿真模型,通过数值仿真和实验研究了超声波空化微射流对沉积物的清洗机理及规律。结果表明:超声波空化微射流存在高度随机性,导致沉积物表面形成大量不均匀凹坑,凹坑直径近似呈GEVⅡ分布;沉积物内部及壁面黏结处出现扩展性裂纹,促使沉积物剥离;沉积物表面凹坑直径和深度与超声波声压呈线性增大规律,超声波对凹坑深度的影响大于直径的影响。超声波功率从100 W增大到300 W,声压从100 kPa增加至200 kPa,超声波作用60 s,实验得到凹坑平均直径从6.10 μm增大至7.38 μm,平均深度从1.18 μm增加至3.46 μm;数值仿真计算凹坑直径从9.60 μm增大至9.80 μm,平均深度从1.42 μm增加至3.89 μm。

关键词: 石油, 沉积物, 超声波, 空化, 微射流, 清洗, 数值模拟

CLC Number: