CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 1960-1972.DOI: 10.11949/0438-1157.20241308
• Reviews and monographs • Previous Articles
Liuhuimei CHENG(
), Junying YAN, Huiqing LIU, Zhipeng WANG, Baoying WANG, Tongwen XU, Yaoming WANG(
)
Received:2024-11-15
Revised:2025-03-21
Online:2025-06-13
Published:2025-05-25
Contact:
Yaoming WANG
程刘惠美(
), 闫军营, 刘慧情, 王治澎, 王报英, 徐铜文, 汪耀明(
)
通讯作者:
汪耀明
作者简介:程刘惠美(2001—),女,硕士研究生,clhm0212@mail.ustc.edu.cn
基金资助:CLC Number:
Liuhuimei CHENG, Junying YAN, Huiqing LIU, Zhipeng WANG, Baoying WANG, Tongwen XU, Yaoming WANG. Progress of bipolar membrane electrodialysis for non-aqueous systems[J]. CIESC Journal, 2025, 76(5): 1960-1972.
程刘惠美, 闫军营, 刘慧情, 王治澎, 王报英, 徐铜文, 汪耀明. 双极膜电渗析在醇水体系的应用研究进展[J]. 化工学报, 2025, 76(5): 1960-1972.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 (a) Schematic diagram of water/alcohol conjugation/dissociation at the interfacial layer of the bipolar membrane; (b) Schematic diagram of alkoxides production; (c) Gluconic acid production; (d) Lithium hydroxide production[8]
Fig. 2 Water dissociation model of the bipolar membranes (the plots show the charge density of the ions on the CEL and AEL, and the electrostatic potential on the BPM IL)
| 溶剂 | 化学式 | 介电常数 | pKSH | 黏度 |
|---|---|---|---|---|
| 水 | H2O | 78.4 | 14.00 | 1.00 |
| 甲醇 | CH3OH | 32.7 | 16.71 | 0.611 |
| 乙醇 | CH3CH2OH | 24.6 | 18.90 | 1.19 |
| 丙醇 | CH3CH2CH2OH | 20.5 | 19.43 | 2.20 |
Table 1 Summary of the main properties of different solvents[47]
| 溶剂 | 化学式 | 介电常数 | pKSH | 黏度 |
|---|---|---|---|---|
| 水 | H2O | 78.4 | 14.00 | 1.00 |
| 甲醇 | CH3OH | 32.7 | 16.71 | 0.611 |
| 乙醇 | CH3CH2OH | 24.6 | 18.90 | 1.19 |
| 丙醇 | CH3CH2CH2OH | 20.5 | 19.43 | 2.20 |
Fig. 5 (a) Typical Nyquist spectroscopy and equivalent circuits (EECs) of bipolar membranes; (b),(c) Water/methanol impedance profiles[32]; (d),(e) Water/methanol Bode profiles[32]; (f) Water-alcohol impedance spectroscopy[54]
Fig.8 Membrane stack configurations for methanol dissociation (a), ethanol dissociation (b), green chemistry synthesis of methyl methoxyacetate (c) and lithium methanol production in alcohol system (d)[32]
| 1 | Frilette V J. Preparation and characterization of bipolar ion exchange membranes[J]. The Journal of Physical Chemistry, 1956, 60(4): 435-439. |
| 2 | Mauro A. Space charge regions in fixed charge membranes and the associated property of capacitance[J]. Biophysical Journal, 1962, 2(2 Pt 1): 179-198. |
| 3 | Bassignana I C, Reiss H. Ion transport and water dissociation in bipolar ion exchange membranes[J]. Journal of Membrane Science, 1983, 15(1): 27-41. |
| 4 | Peng S K, Xu X, Lu S F, et al. A self-humidifying acidic-alkaline bipolar membrane fuel cell[J]. Journal of Power Sources, 2015, 299: 273-279. |
| 5 | Dai J C, Dong Y C, Gao P, et al. A sandwiched bipolar membrane for all vanadium redox flow battery with high coulombic efficiency[J]. Polymer, 2018, 140: 233-239. |
| 6 | Chen R Y. Redox flow batteries: mitigating cross-contamination via bipolar redox-active materials and bipolar membranes[J]. Current Opinion in Electrochemistry, 2023, 37: 101188. |
| 7 | Metlay A S, Chyi B, Yoon Y, et al. Three-chamber design for aqueous acid-base redox flow batteries[J]. ACS Energy Letters, 2022, 7(3): 908-913. |
| 8 | Chen X, Ruan X Y, Kentish S E, et al. Production of lithium hydroxide by electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2021, 274: 119026. |
| 9 | Noguchi M, Nakamura Y, Shoji T, et al. Simultaneous removal and recovery of boron from waste water by multi-step bipolar membrane electrodialysis[J]. Journal of Water Process Engineering, 2018, 23: 299-305. |
| 10 | Fu R, Wang H Y, Yan J Y, et al. Ion injection bipolar membrane electrodialysis realizes over 8 mol/L NaOH conversion from a brine stream[J]. AIChE Journal, 2024, 70(4): e18345. |
| 11 | Yan J Y, Yan H Y, Wang H Y, et al. Bipolar membrane electrodialysis for clean production of L-10-camphorsulfonic acid: from laboratory to industrialization[J]. AIChE Journal, 2022, 68(2): e17490. |
| 12 | Wang H Y, Yan J Y, Fu R, et al. Bipolar membrane electrodialysis for cleaner production of gluconic acid: valorization of the regenerated base for the upstream enzyme catalysis[J]. Industrial & Engineering Chemistry Research, 2022, 61(22): 7634-7644. |
| 13 | Jiang C X, Chen B L, Xu Z A, et al. Ion-“distillation” for isolating lithium from lake brine[J]. AIChE Journal, 2022, 68(6): e17710. |
| 14 | Bi J T, Chen T Y, Xie Y, et al. Bipolar membrane electrodialysis integrated with in situ CO2 absorption for simulated seawater concentrate utilization, carbon storage and production of sodium carbonate[J]. Journal of Environmental Sciences, 2024, 142: 21-32. |
| 15 | Ye W Y, Huang J, Lin J Y, et al. Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent[J]. Separation and Purification Technology, 2015, 144: 206-214. |
| 16 | Nagasawa H, Yamasaki A, Iizuka A, et al. A new recovery process of carbon dioxide from alkaline carbonate solution via electrodialysis[J]. AIChE Journal, 2009, 55(12): 3286-3293. |
| 17 | Siritanaratkul B, Forster M, Greenwell F, et al. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts[J]. Journal of the American Chemical Society, 2022, 144(17): 7551-7556. |
| 18 | Li Y J, Wang R Y, Shi S Y, et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: experiments, modeling, and performance analysis[J]. Environmental Science and Technology, 2021, 55(21): 14886-14896. |
| 19 | Ben Ali M A, Rakib M, Laborie S, et al. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate[J]. Journal of Membrane Science, 2004, 244(1/2): 89-96. |
| 20 | Xu Z A, Wan L, Liao Y W, et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA·cm-2 [J]. Nature Communications, 2023, 14(1): 1619. |
| 21 | Oener S Z, Twight L P, Lindquist G A, et al. Thin cation-exchange layers enable high-current-density bipolar membrane electrolyzers via improved water transport[J]. ACS Energy Letters, 2021, 6(1): 1-8. |
| 22 | Marin D H, Perryman J T, Hubert M A, et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers[J]. Joule, 2023, 7(4): 765-781. |
| 23 | Lee L, Kim D. Poly(arylene ether ketone)-based bipolar membranes for acid-alkaline water electrolysis applications[J]. Journal of Materials Chemistry A, 2021, 9(9): 5485-5496. |
| 24 | Park E J, Arges C G, Xu H, et al. Membrane strategies for water electrolysis[J]. ACS Energy Letters, 2022, 7(10): 3447-3457. |
| 25 | Blommaert M A, Subramanian S, Yang K L, et al. High indirect energy consumption in AEM-based CO2 electrolyzers demonstrates the potential of bipolar membranes[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 557-563. |
| 26 | Chen Y Y, Wrubel J A, Ellis Klein W, et al. High-performance bipolar membrane development for improved water dissociation[J]. ACS Applied Polymer Materials, 2020, 2(11): 4559-4569. |
| 27 | Li Y C, Yan Z F, Hitt J, et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells[J]. Advanced Sustainable Systems, 2018, 2(4): 1700187. |
| 28 | Xie K, Miao R K, Ozden A, et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products[J]. Nature Communications, 2022, 13(1): 3609. |
| 29 | Zhang F, Huang C H, Xu T W. Production of sebacic acid using two-phase bipolar membrane electrodialysis[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7482-7488. |
| 30 | Ma X X, Liu W L, Li C R, et al. Bipolar membrane electrodialysis for efficient production of ferulic acid in alcohol/water mixed solvent[J]. Separation and Purification Technology, 2024, 341: 126876. |
| 31 | Liu X H, Li Q H, Jiang C X, et al. Bipolar membrane electrodialysis in aqua–ethanol medium: production of salicylic acid[J]. Journal of Membrane Science, 2015, 482: 76-82. |
| 32 | Yan J Y, Li R R, Wang H Y, et al. Alcohol splitting with bipolar membranes for the production of metal alkoxides: alcohol splitting behaviour and ion transport kinetics[J]. Chemical Engineering Science, 2024, 286: 119657. |
| 33 | Sridhar S, Feldmann C. Electrodialysis in a non-aqueous medium: a clean process for the production of acetoacetic ester[J]. Journal of Membrane Science, 1997, 124(2): 175-179. |
| 34 | Li Q H, Huang C H, Xu T W. Bipolar membrane electrodialysis in an organic medium: production of methyl methoxyacetate[J]. Journal of Membrane Science, 2009, 339(1/2): 28-32. |
| 35 | Loh Y Y, Nagao K, Hoover A J, et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds[J]. Science, 2017, 358(6367): 1182-1187. |
| 36 | Grossman G. Water dissociation effects in ion transport through composite membrane[J]. The Journal of Physical Chemistry, 1976, 80(14): 1616-1625. |
| 37 | Simons R. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes[J]. Electrochimica Acta, 1984, 29(2): 151-158. |
| 38 | Onsager L. Deviations from Ohm’s law in weak electrolytes[J]. The Journal of Chemical Physics, 1934, 2(9): 599-615. |
| 39 | Ramírez P, Manzanares J A, Mafé S. Water dissociation effects in ion transport through anion exchange membranes with thin cation exchange surface films[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 1991, 95(4): 499-503. |
| 40 | Ge Z, Shehzad M A, Yang X, et al. High-performance bipolar membrane for electrochemical water electrolysis[J]. Journal of Membrane Science, 2022, 656: 120660. |
| 41 | Krol J J, Wessling M, Strathmann H. Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation[J]. Journal of Membrane Science, 1999, 162(1/2): 145-154. |
| 42 | Timashev S F, Kirganova E V. Mechanism of the electrolytic decomposition of water-molecules in bipolar ion-exchange membranes[J]. Soviet Electrochemistry, 1981, 17(3): 366-369. |
| 43 | Zabolotskii V I, Gnusin N, Shel'deshov N V. The current-voltage characteristic of the transition region in MB-1 bipolar membranes[J]. Soviet Electrochemistry, 1984, 20(10): 1238-1243. |
| 44 | Strathmann H, Krol J J, Rapp H J, et al. Limiting current density and water dissociation in bipolar membranes[J]. Journal of Membrane Science, 1997, 125(1): 123-142. |
| 45 | Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: a review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538. |
| 46 | Mafé S, Ramı́rez P, Alcaraz A. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane[J]. Chemical Physics Letters, 1998, 294(4/5): 406-412. |
| 47 | Onishi N, Minagawa M, Tanioka A, et al. Current-voltage characteristics and solvent dissociation of bipolar membranes in organic solvents[J]. Membranes, 2022, 12(12): 1236. |
| 48 | Bruggeman D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen (I): Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(8): 665-679. |
| 49 | Abdu S, Sricharoen K, Wong J E, et al. Catalytic polyelectrolyte multilayers at the bipolar membrane interface[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10445-10455. |
| 50 | Blommaert M A, Vermaas D A, Izelaar B, et al. Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes[J]. Journal of Materials Chemistry A, 2019, 7(32): 19060-19069. |
| 51 | Balster J, Srinkantharajah S, Sumbharaju R, et al. Tailoring the interface layer of the bipolar membrane[J]. Journal of Membrane Science, 2010, 365(1/2): 389-398. |
| 52 | Giesbrecht P K, Freund M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials, 2020, 32(19): 8060-8090. |
| 53 | Yan Z F, Zhu L, Li Y C, et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes[J]. Energy & Environmental Science, 2018, 11(8): 2235-2245. |
| 54 | 刘小菏, 李秋花, 葛亮, 等. 水-乙醇体系对双极膜中间界面层的影响[J]. 化工学报, 2016, 67(1):309-314. |
| Liu X H, Li Q H, Ge L, et al. Influence of agua-ethanol medium on properties of intermediate layer of a bipolar membrane [J]. CIESC Journal, 2016, 67(1):309-314. | |
| 55 | Yan K X, Hang X F, Liu J S, et al. Preparation of hypophosphorous acid by bipolar membrane electrodialysis: process optimization and phosphorous acid minimization[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21855-21863. |
| 56 | Wang Y M, Zhang X, Xu T W. Integration of conventional electrodialysis and electrodialysis with bipolar membranes for production of organic acids[J]. Journal of Membrane Science, 2010, 365(1/2): 294-301. |
| 57 | Jaime Ferrer J S, Laborie S, Durand G, et al. Formic acid regeneration by electromembrane processes[J]. Journal of Membrane Science, 2006, 280(1/2): 509-516. |
| 58 | Szczygiełda M, Antczak J, Prochaska K. Separation and concentration of succinic acid from post-fermentation broth by bipolar membrane electrodialysis (EDBM)[J]. Separation and Purification Technology, 2017, 181: 53-59. |
| 59 | Yan J Y, Yu W S, Wang Z H, et al. Review on high-performance polymeric bipolar membrane design and novel electrochemical applications[J]. Aggregate, 2024, 5(4): e527. |
| 60 | Alvarez F, Alvarez R, Coca J, et al. Salicylic acid production by electrodialysis with bipolar membranes [J]. Journal of Membrane Science, 1997, 123(1): 61-69. |
| 61 | Kameche M, Xu F N, Innocent C, et al. Electrodialysis in water-ethanol solutions: application to the acidification of organic salts[J]. Desalination, 2003, 154(1): 9-15. |
| 62 | Luo G S, Shan X Y, Qi X, et al. Two-phase electro-electrodialysis for recovery and concentration of citric acid[J]. Separation and Purification Technology, 2004, 38(3): 265-271. |
| 63 | Yi S S, Lu Y C, Luo G S. Separation and concentration of lactic acid by electro-electrodialysis[J]. Separation and Purification Technology, 2008, 60(3): 308-314. |
| 64 | Rottiers T, der B Bruggen van, Pinoy L. Production of salicylic acid in a three compartment bipolar membrane electrodialysis configuration[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 190-199. |
| 65 | Chou T J, Tanioka A. Current–voltage curves of composite bipolar membrane in alcohol–water solutions[J]. The Journal of Physical Chemistry B, 1998, 102(40): 7866-7870. |
| 66 | Sridhar S. Electrodialysis in a non-aqueous medium: production of sodium methoxide[J]. Journal of Membrane Science, 1996, 113(1): 73-79. |
| 67 | Li Q H, Huang C H, Xu T W. Ethanol splitting in bipolar membranes: evidence from NMR analysis[J]. Journal of Membrane Science, 2008, 325(1): 20-22. |
| 68 | Li Q H, Huang C H, Xu T W. Alcohol splitting for the production of methyl methoxyacetate: integration of ion-exchange with bipolar membrane electrodialysis[J]. Journal of Membrane Science, 2011, 367(1/2): 314-318. |
| 69 | Tomilov A P. Electrochemical syntheses in absolute alcohols (review)[J]. Russian Journal of Electrochemistry, 2000, 36(2): 100-116. |
| 70 | Zheng Y Z, Wang N N, Luo J J, et al. Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile[J]. Physical Chemistry Chemical Physics, 2013, 15(41): 18055. |
| 71 | Hou H Y, Huang Y R, Bai B F, et al. Volumetric properties and molecular interactions of binary mixtures imidazolium acetates-ethanol at 293.15 K[J]. Chemical Journal of Chinese Universities, 2014, 35(1): 121-126. |
| 72 | Oener S Z, Foster M J, Boettcher S W. Accelerating water dissociation in bipolar membranes and for electrocatalysis[J]. Science, 2020, 369(6507): 1099-1103. |
| 73 | Vermaas D A, Wiegman S, Nagaki T, et al. Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting[J]. Sustainable Energy & Fuels, 2018, 2(9): 2006-2015. |
| 74 | Greben V P, Pivovarov N Y, Kovarskii N Y, et al. Influence of ionite nature on physicochemical properties of bipolar ion-exchange membranes[J]. Zhurnal FizicheskoiI Khimii, 1978, 52(10): 2641-2645. |
| 75 | Chen L, Xu Q C, Oener S Z, et al. Design principles for water dissociation catalysts in high-performance bipolar membranes[J]. Nature Communications, 2022, 13(1): 3846. |
| 76 | Bui J C, Lees E W, Marin D H, et al. Multi-scale physics of bipolar membranes in electrochemical processes[J]. Nature Chemical Engineering, 2024, 1: 45-60. |
| 77 | Xu Z A, Liao Y W, Pang M B, et al. A chemically interlocked bipolar membrane achieving stable water dissociation for high output ammonia electrosynthesis[J]. Energy & Environmental Science, 2023, 16(9): 3815-3824. |
| 78 | Sasmal S, Chen L, Sarma P V, et al. Materials descriptors for advanced water dissociation catalysts in bipolar membranes[J]. Nature Materials, 2024, 23(10): 1421-1427. |
| 79 | Zhu B T, Dong B, Wang F, et al. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides[J]. Nature Communications, 2023, 14(1): 1686. |
| 80 | Chen W, Xie C, Wang Y Y, et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11): 2974-2993. |
| 81 | Zuo P P, Ye C C, Jiao Z R, et al. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023, 617(7960): 299-305. |
| 82 | Xu J, Jiang R, Qiu Z, et al. Conjugated microporous polymer for membrane separation: a review [J]. Separation and Purification Technology, 2025, 362: 131795. |
| 83 | Zuo P P, Xu T W. Constructing hydrophilic polymer membranes with microporosity for aqueous redox flow batteries[J]. ChemSusChem, 2025: e202402562. |
| 84 | Peng K, Zhang C, Fang J K, et al. Constructing microporous ion exchange membranes via simple hypercrosslinking for pH-neutral aqueous organic redox flow batteries[J]. Angewandte Chemie International Edition, 2024, 63(37): e202407372. |
| [1] | Zhi QIU, Ming TAN. Preparation of polyionic liquid membrane and its application in low-sodium and high-potassium healthy soy sauce [J]. CIESC Journal, 2024, 75(S1): 244-250. |
| [2] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
| [3] | Junyong HU, Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO. Experimental study on the performance of multi-stage reverse electrodialysis based on LiCl-NH4Cl aqueous solution [J]. CIESC Journal, 2024, 75(7): 2670-2679. |
| [4] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
| [5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
| [6] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
| [7] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
| [8] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
| [9] | Shanshan YANG, Yuyang YAO, Yundi DONG, Zhipeng XU, Shangshang GAO, Huimin RUAN, Jiangnan SHEN. Preparation and performance of ion exchange membrane with K+ selectivity based on dibenzo-18-crown-6 modification [J]. CIESC Journal, 2022, 73(4): 1781-1793. |
| [10] | SUN Bo, WANG Jianwei, ZHANG Xiaosong. Mass transfer model and performance analysis of liquid desiccant regeneration by electrodialysis [J]. CIESC Journal, 2021, 72(S1): 218-226. |
| [11] | LIU Yuanwei, DONG Chenchu, LIAO Junbin, WANG Chao, CHEN Quan, SHEN Jiangnan. Anti-fouling properties and preparation of anion-exchange membranes based on BPPO modified by different side chain lengths [J]. CIESC Journal, 2021, 72(3): 1732-1741. |
| [12] | Yuanhui TANG, Wenwen SUN, Taiyu LI, Peng MAO, Yifan JIN, Lin WANG, Yakai LIN, Xiaolin WANG. Reuse of wastewater from dicamba production by bipolar membrane electrodialysis [J]. CIESC Journal, 2021, 72(12): 6328-6339. |
| [13] | Haitao ZHU, Bo YANG, Yaqin WU, Congjie GAO. Numerical simulation of ion transfer during electrodialysis desalination process [J]. CIESC Journal, 2020, 71(8): 3518-3526. |
| [14] | Shiming XU, Zhiqiang LIU, Xi WU, Youwen ZHANG, Junyong HU, Debing WU, Qiang LENG, Dongxu JIN, Ping WANG. Experimental study on the hydrogen production with RED reactor powered by concentration gradient energy [J]. CIESC Journal, 2020, 71(5): 2283-2291. |
| [15] | Chao WANG, Nengxiu PAN, Dan LU, Junbin LIAO, Jiangnan SHEN, Congjie GAO. Preparation of homogeneous anion exchange membrane based on quaternized PVC for electrodialysis [J]. CIESC Journal, 2019, 70(4): 1620-1627. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||