CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2670-2679.DOI: 10.11949/0438-1157.20240198
• Energy and environmental engineering • Previous Articles Next Articles
Junyong HU(), Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO
Received:
2024-02-26
Revised:
2024-04-13
Online:
2024-08-09
Published:
2024-07-25
Contact:
Junyong HU
胡军勇(), 胡亚丽, 谭学诣, 黄佳欣, 张乐炜, 曾俊立, 刘晓奕, 陶源
通讯作者:
胡军勇
作者简介:
胡军勇(1989—),男,博士,讲师,Hu_Junyong@outlook.com
基金资助:
CLC Number:
Junyong HU, Yali HU, Xueyi TAN, Jiaxin HUANG, Lewei ZHANG, Junli ZENG, Xiaoyi LIU, Yuan TAO. Experimental study on the performance of multi-stage reverse electrodialysis based on LiCl-NH4Cl aqueous solution[J]. CIESC Journal, 2024, 75(7): 2670-2679.
胡军勇, 胡亚丽, 谭学诣, 黄佳欣, 张乐炜, 曾俊立, 刘晓奕, 陶源. 基于LiCl-NH4Cl水溶液多级逆电渗析性能的实验研究[J]. 化工学报, 2024, 75(7): 2670-2679.
试剂 | 纯度 | 生产商 |
---|---|---|
氯化锂 | AR,99.0% | 上海麦克林生化科技 |
氯化铵 | AR,99.5% | 上海麦克林生化科技 |
氯化钠 | AR,≥ 99.5% | 天津大茂化学试剂厂 |
铁氰化钾 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾 | AR,99.0% | 天津大茂化学试剂厂 |
Table 1 Specific information of experimental reagents
试剂 | 纯度 | 生产商 |
---|---|---|
氯化锂 | AR,99.0% | 上海麦克林生化科技 |
氯化铵 | AR,99.5% | 上海麦克林生化科技 |
氯化钠 | AR,≥ 99.5% | 天津大茂化学试剂厂 |
铁氰化钾 | AR,99.5% | 上海阿拉丁生化科技 |
亚铁氰化钾 | AR,99.0% | 天津大茂化学试剂厂 |
型号 | 选择 透过性α/% | 电阻R/(Ω∙cm2) | |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
Table 2 Basic parameters of Fujifilm IEMs
型号 | 选择 透过性α/% | 电阻R/(Ω∙cm2) | |
---|---|---|---|
Fujifilm Type 10 AEM | 1.25 | 94 | 1.7 |
Fujifilm Type 10 CEM | 1.35 | 98.5 | 2.0 |
型号 | 材料 | 开孔面积/% | 孔隙率ε/% | |
---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 |
Table 3 Relevant parameters of the spacers
型号 | 材料 | 开孔面积/% | 孔隙率ε/% | |
---|---|---|---|---|
DPP32 | PET | 1.50 | 68 | 79.2 |
实验设备 | 型号 | 测量范围 | 精度 | 生产商 |
---|---|---|---|---|
电子天平 | JJ1523BC | 0~1520 g | ±0.001 g | G&G 测试仪器, 中国 |
电化学工作站 | CHI660E | 3 nA~250 mA | 0.2% | 上海辰华仪器有限公司,中国 |
电流放大器 | CHI680C | ±2 A | 1 pA | 上海辰华仪器有限公司,中国 |
数字万用表 | Keithley 2110 | ±10 V | ±0.012% | 泰克科技有限公司,美国 |
恒温水箱 | HH-600 | 室温~100℃ | ±0.5℃ | 智博睿仪器制造有限公司,中国 |
压差变送器 | MIK-2051 | 0~350 kPa | ±0.075% | 杭州美控自动化技术有限公司, 中国 |
蠕动泵 | DIPump 550-B253 | ≤ 452 ml·min-1 | 0.1 r·min-1 | Kamoer,中国 |
Table 4 Relevant parameters of experimental equipment and instruments
实验设备 | 型号 | 测量范围 | 精度 | 生产商 |
---|---|---|---|---|
电子天平 | JJ1523BC | 0~1520 g | ±0.001 g | G&G 测试仪器, 中国 |
电化学工作站 | CHI660E | 3 nA~250 mA | 0.2% | 上海辰华仪器有限公司,中国 |
电流放大器 | CHI680C | ±2 A | 1 pA | 上海辰华仪器有限公司,中国 |
数字万用表 | Keithley 2110 | ±10 V | ±0.012% | 泰克科技有限公司,美国 |
恒温水箱 | HH-600 | 室温~100℃ | ±0.5℃ | 智博睿仪器制造有限公司,中国 |
压差变送器 | MIK-2051 | 0~350 kPa | ±0.075% | 杭州美控自动化技术有限公司, 中国 |
蠕动泵 | DIPump 550-B253 | ≤ 452 ml·min-1 | 0.1 r·min-1 | Kamoer,中国 |
电流密度id/(A·m-2) | 浓溶液质量摩尔浓度mHC/(mol·kg-1) | 稀溶液质量摩尔浓度mLC/(mol·kg-1) | 流速v/(cm·s-1) |
---|---|---|---|
20~80 | 3~5 | 0.01~0.1 | 0.5~2 |
Table 5 Variation range of experimental parameters
电流密度id/(A·m-2) | 浓溶液质量摩尔浓度mHC/(mol·kg-1) | 稀溶液质量摩尔浓度mLC/(mol·kg-1) | 流速v/(cm·s-1) |
---|---|---|---|
20~80 | 3~5 | 0.01~0.1 | 0.5~2 |
Fig. 4 Variations of the total net output power with the number of RED stacks under different current densities (id) [mHC=4 mol·kg-1, mLC=0.05 mol·kg-1, t=(25±1)°C, v=1.0 cm·s-1]
电池 单元数 | 工作溶液 | id/(A·m-2) | N | Pnet/W | 文献 |
---|---|---|---|---|---|
5 | NaCl水溶液 | 60 | 8 | 0.92 | [ |
10 | NaCl水溶液 | —① | 22 | 0.34② | [ |
10 | LiBr-H2O-CH3CH2OH | —① | 22 | 0.99② | [ |
5 | LiCl-NH4Cl水溶液 | 80 | 9 | 1.17 | 本文 |
Table 6 Comparison of pertinent performance data for MSRED
电池 单元数 | 工作溶液 | id/(A·m-2) | N | Pnet/W | 文献 |
---|---|---|---|---|---|
5 | NaCl水溶液 | 60 | 8 | 0.92 | [ |
10 | NaCl水溶液 | —① | 22 | 0.34② | [ |
10 | LiBr-H2O-CH3CH2OH | —① | 22 | 0.99② | [ |
5 | LiCl-NH4Cl水溶液 | 80 | 9 | 1.17 | 本文 |
Fig.5 Variations of the total net output power with the number of RED stacks under different molality concentration of HC feed solution [mLC=0.05 mol·kg-1, t=(25±1)℃, v = 1.0 cm·s-1]
Fig.6 Variations of the total net output power with the number of RED stacks under different molality concentration of LC feed solution [mHC=4 mol·kg-1, t=(25±1)℃, v=1.0 cm·s-1]
Fig.7 Variations of the total net output power with the number of RED stacks under different flow velocity [mHC=4 mol·kg-1, mLC=0.05 mol·kg-1, t =(25±1)°C]
1 | Kang S B, Li J B, Wang Z H, et al. Salinity gradient energy capture for power production by reverse electrodialysis experiment in thermal desalination plants[J]. Journal of Power Sources, 2022, 519: 230806. |
2 | Post J W, Goeting C H, Valk J, et al. Towards implementation of reverse electrodialysis for power generation from salinity gradients[J]. Desalination and Water Treatment, 2010, 16(1/2/3): 182-193. |
3 | 袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊, 2023, 38(1): 11-22. |
Yuan L. Theory and technology considerations on high-quality development of coal main energy security in China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 11-22. | |
4 | 李洪言, 张景谦, 陈健斌, 等. 2021年全球能源转型面临挑战: 基于《BP世界能源统计年鉴(2022)》[J]. 天然气与石油, 2022, 40(6): 129-138. |
Li H Y, Zhang J Q, Chen J B, et al. Global energy transition faces challenges in 2021—based on the BP Statistical Review of World Energy(2022)[J]. Natural Gas and Oil, 2022, 40(6): 129-138. | |
5 | Xia J B, Eigenberger G, Strathmann H, et al. Acid-base flow battery, based on reverse electrodialysis with Bi-polar membranes: stack experiments[J]. Processes, 2020, 8(1): 99. |
6 | 陈霞, 蒋晨啸, 汪耀明, 等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202. |
Chen X, Jiang C X, Wang Y M, et al. Advances in reverse electrodialysis and its applications on renewable energy and environment protection[J]. CIESC Journal, 2018, 69(1): 188-202. | |
7 | Tamburini A, Tedesco M, Cipollina A, et al. Reverse electrodialysis heat engine for sustainable power production[J]. Applied Energy, 2017, 206: 1334-1353. |
8 | Tian H L, Wang Y, Pei Y S, et al. Unique applications and improvements of reverse electrodialysis: a review and outlook[J]. Applied Energy, 2020, 262: 114482. |
9 | Tamburini A, La Barbera G, Cipollina A, et al. CFD prediction of scalar transport in thin channels for reverse electrodialysis[J]. Desalination and Water Treatment, 2015, 55(12): 3424-3445. |
10 | Altaee A, Zaragoza G, Drioli E, et al. Evaluation the potential and energy efficiency of dual stage pressure retarded osmosis process[J]. Applied Energy, 2017, 199: 359-369. |
11 | Kim H, Yang S, Choi J, et al. Optimization of the number of cell pairs to design efficient reverse electrodialysis stack[J]. Desalination, 2021, 497: 114676. |
12 | 刘子健, 鹿丁, 白银, 等. 反向电渗析热机发生单元研究进展[J]. 科学通报, 2021, 66(30): 3811-3821. |
Liu Z J, Lu D, Bai Y, et al. Progress on the regeneration unit of a reverse electrodialysis heat engine[J]. Chinese Science Bulletin, 2021, 66(30): 3811-3821. | |
13 | Simões C, Pintossi D, Saakes M, et al. Electrode segmentation in reverse electrodialysis: improved power and energy efficiency[J]. Desalination, 2020, 492: 114604. |
14 | Olkis C, Brandani S, Santori G. Adsorption reverse electrodialysis driven by power plant waste heat to generate electricity and provide cooling[J]. International Journal of Energy Research, 2021, 45(2): 1971-1987. |
15 | Liu Z J, Lu D, Bai Y, et al. Energy and exergy analysis of heat to salinity gradient power conversion in reverse electrodialysis heat engine[J]. Energy Conversion and Management, 2022, 252: 115068. |
16 | Giacalone F, Olkis C, Santori G, et al. Novel solutions for closed-loop reverse electrodialysis: thermodynamic characterisation and perspective analysis[J]. Energy, 2019, 166: 674-689. |
17 | Giacalone F, Catrini P, Tamburini A, et al. Exergy analysis of reverse electrodialysis[J]. Energy Conversion and Management, 2018, 164: 588-602. |
18 | Weiner A M, McGovern R K, Lienhard V J H. A new reverse electrodialysis design strategy which significantly reduces the levelized cost of electricity[J]. Journal of Membrane Science, 2015, 493: 605-614. |
19 | Moreno J, Díez V, Saakes M, et al. Mitigation of the effects of multivalent ion transport in reverse electrodialysis[J]. Journal of Membrane Science, 2018, 550: 155-162. |
20 | Guo Z Y, Ji Z Y, Zhang Y G, et al. Effect of ions (K+, Mg2+, Ca2+ and SO4 2-) and temperature on energy generation performance of reverse electrodialysis stack[J]. Electrochimica Acta, 2018, 290: 282-290. |
21 | Loeb S. Method and apparatus for generating power utilizing reverse electrodialysis: US4171409[P]. 1979-10-16. |
22 | Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: a validated process model for design and optimization[J]. Chemical Engineering Journal, 2011, 166(1): 256-268. |
23 | Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1/2): 136-144. |
24 | Hu J Y, Xu S M, Wu X, et al. Multi-stage reverse electrodialysis: strategies to harvest salinity gradient energy[J]. Energy Conversion and Management, 2019, 183: 803-815. |
25 | Hu J Y, Xu S M, Wu X, et al. Experimental investigation on the performance of series control multi-stage reverse electrodialysis[J]. Energy Conversion and Management, 2020, 204: 112284. |
26 | Wang Z H, Li J B, Zhang C, et al. Power production from seawater and discharge brine of thermal desalination units by reverse electrodialysis[J]. Applied Energy, 2022, 314: 118977. |
27 | Daniilidis A, Vermaas D A, Herber R, et al. Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis[J]. Renewable Energy, 2014, 64: 123-131. |
28 | Tedesco M, Brauns E, Cipollina A, et al. Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20. |
29 | Wang H, Li J B, Li M Q, et al. Reverse electrodialysis characteristic of the lithium bromide-ethanol-water ternary solution[J]. Journal of Power Sources, 2023, 585: 233636. |
30 | Micari M, Bevacqua M, Cipollina A, et al. Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications[J]. Journal of Membrane Science, 2018, 551: 315-325. |
31 | 胡亚丽, 胡军勇, 马素霞, 等. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
Hu Y L, Hu J Y, Ma S X, et al. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine[J]. CIESC Journal, 2023, 74(8): 3513-3521. | |
32 | Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science and Technology, 2011, 45(16): 7089-7095. |
33 | 王一玮. 反向电渗析盐差膜堆系统产电特性及其影响因素研究[D]. 西安: 西安理工大学, 2022. |
Wang Y W. Investigation on the power generation performance of a salt-difference stack system by reverse electrodialysis and its influencing factors[D]. Xi'an: Xi'an University of Technology, 2022. |
[1] | Songhong ZHANG, Xinyi ZHAO, Xiaoling LOU, Shaochuan SHEN, Junxian YUN. Separation of lactoperoxidase using cation exchange nano-cryogels [J]. CIESC Journal, 2024, 75(7): 2574-2582. |
[2] | Bin SU, Haowei DONG, Zhenmin LUO, Jun DENG, Tao WANG, Fangming CHENG. Research progress on explosion dynamic characteristics and mechanism of hybrid mixtures [J]. CIESC Journal, 2024, 75(6): 2109-2122. |
[3] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
[4] | Wenchao JIANG, Zhaochao XU. Fluorescent dyes for super-resolution imaging of organelles [J]. CIESC Journal, 2024, 75(4): 1333-1354. |
[5] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[6] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
[7] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[8] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
[9] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[10] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[11] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[12] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[13] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[14] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[15] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||