CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2733-2742.DOI: 10.11949/0438-1157.20241291
• Process system engineering • Previous Articles Next Articles
Yulun WU1(
), Zhenlei WANG1(
), Xin WANG2
Received:2024-11-13
Revised:2024-12-19
Online:2025-07-09
Published:2025-06-25
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:吴与伦(2000—),男,硕士研究生,wyl_33@126.com
CLC Number:
Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace[J]. CIESC Journal, 2025, 76(6): 2733-2742.
吴与伦, 王振雷, 王昕. 基于对比学习的乙烯裂解炉运行工况识别方法[J]. 化工学报, 2025, 76(6): 2733-2742.
Add to citation manager EndNote|Ris|BibTeX
| 算法伪代码 |
|---|
# z_p, z_n: 编码器网络 # m:动量系数 # t:温度系数 z_n.params = z_p.params # 初始化 for z in loader: # 对于样本大小为N,其中的元素z z_p = aug(z) # 一种随机数据增强 z_n = aug(z) # 另一种随机数据增强 p = z_p.forward(z_q) n = z_n.forward(z_n) k = k.detach() l_pos = bmm(p.view(N,1,C), n.view(N,C,1)) # 生成正样本 l_neg = mm(p.view(N,C), p.view(C,K)) # 生成负样本 logits = picture([l_pos, l_neg], dim=1) labels = zeros(N) loss = SoftmaxLoss(logits/t, labels) # 对比学习损失计算 loss.backward() update(z_p.params) z_n.params = m*z_n.params+(1-m)*z_p.params# 动量更新 |
Table 1 Pseudo code for algorithms
| 算法伪代码 |
|---|
# z_p, z_n: 编码器网络 # m:动量系数 # t:温度系数 z_n.params = z_p.params # 初始化 for z in loader: # 对于样本大小为N,其中的元素z z_p = aug(z) # 一种随机数据增强 z_n = aug(z) # 另一种随机数据增强 p = z_p.forward(z_q) n = z_n.forward(z_n) k = k.detach() l_pos = bmm(p.view(N,1,C), n.view(N,C,1)) # 生成正样本 l_neg = mm(p.view(N,C), p.view(C,K)) # 生成负样本 logits = picture([l_pos, l_neg], dim=1) labels = zeros(N) loss = SoftmaxLoss(logits/t, labels) # 对比学习损失计算 loss.backward() update(z_p.params) z_n.params = m*z_n.params+(1-m)*z_p.params# 动量更新 |
| 参数 | 本文 | TimesURL |
|---|---|---|
| 模型架构 | ResNet-50 | TCN |
| 学习率 | 0.03 | 0.001 |
| 批量大小 | 256 | 16 |
| 动量系数 | 0.999 | 无 |
Table 2 Parameter comparison table
| 参数 | 本文 | TimesURL |
|---|---|---|
| 模型架构 | ResNet-50 | TCN |
| 学习率 | 0.03 | 0.001 |
| 批量大小 | 256 | 16 |
| 动量系数 | 0.999 | 无 |
| 灰度图大小 | 本文方法的 准确率/% | 本文方法的测试准确率/% | TimesURL准确率/% |
|---|---|---|---|
| 16×16 | 92.5 | 76.5 | 61.5 |
| 24×24 | 94.0 | 79.2 |
Table 3 Gray-scale image recognition accuracy of bearing data set
| 灰度图大小 | 本文方法的 准确率/% | 本文方法的测试准确率/% | TimesURL准确率/% |
|---|---|---|---|
| 16×16 | 92.5 | 76.5 | 61.5 |
| 24×24 | 94.0 | 79.2 |
| 灰度图大小 | 本文方法的准确率/% | 本文方法的测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 5×13 | 71.2 | 59.4 | 55.1 |
| 10×13 | 85.8 | 71.6 | |
| 20×13 | 90.3 | 79.1 | |
| 50×13 | 92.1 | 81.7 |
Table 4 Ethylene cracking furnace dataset 1 grayscale image recognition accuracy
| 灰度图大小 | 本文方法的准确率/% | 本文方法的测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 5×13 | 71.2 | 59.4 | 55.1 |
| 10×13 | 85.8 | 71.6 | |
| 20×13 | 90.3 | 79.1 | |
| 50×13 | 92.1 | 81.7 |
| 燃料燃烧效率范围 | 对应热效率等级 | 对应热效率含义 |
|---|---|---|
| (2.0, 3.02) | 1 | 低 |
| (3.02, 3.04) | 2 | 较低 |
| (3.04, 3.06) | 3 | 中等 |
| (3.06, 3.08) | 4 | 较高 |
| (3.08, 3.10) | 5 | 高 |
Table 5 Fuel combustion efficiency range and their meanings
| 燃料燃烧效率范围 | 对应热效率等级 | 对应热效率含义 |
|---|---|---|
| (2.0, 3.02) | 1 | 低 |
| (3.02, 3.04) | 2 | 较低 |
| (3.04, 3.06) | 3 | 中等 |
| (3.06, 3.08) | 4 | 较高 |
| (3.08, 3.10) | 5 | 高 |
| 灰度图大小 | 本文方法的准确率/% | 本文方法的 测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 3×17 | 91.5 | 75.6 | 66.2 |
Table 6 Ethylene cracking furnace dataset 2 grayscale image recognition accuracy
| 灰度图大小 | 本文方法的准确率/% | 本文方法的 测试准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 3×17 | 91.5 | 75.6 | 66.2 |
| 数据集类型 | 灰度图大小 | 本文方法的 准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 轴承数据集 | 16×16 | 92.5 | 61.5 |
| 24×24 | 94.0 | ||
| 裂解炉燃烧数据集1 | 5×13 | 71.2 | 55.1 |
| 10×13 | 85.8 | ||
| 20×13 | 90.3 | ||
| 50×13 | 92.1 | ||
| 裂解炉燃烧数据集2 | 3×17 | 91.5 | 66.2 |
Table 7 Experimental results
| 数据集类型 | 灰度图大小 | 本文方法的 准确率/% | TimesURL 准确率/% |
|---|---|---|---|
| 轴承数据集 | 16×16 | 92.5 | 61.5 |
| 24×24 | 94.0 | ||
| 裂解炉燃烧数据集1 | 5×13 | 71.2 | 55.1 |
| 10×13 | 85.8 | ||
| 20×13 | 90.3 | ||
| 50×13 | 92.1 | ||
| 裂解炉燃烧数据集2 | 3×17 | 91.5 | 66.2 |
| [1] | Deng J L, Chen G R. Research on online fault diagnosis model based on IoT in process industry[J]. Advanced Materials Research, 2013, 765/766/767: 2089-2092. |
| [2] | 刘宇航. 基于主成分分析的故障监测方法及其应用研究[D]. 上海: 华东理工大学, 2012. |
| Liu Y H. Research on fault monitoring method based on principal component analysis and its application[D]. Shanghai: East China University of Science and Technology, 2012. | |
| [3] | 常亚娜, 武锦涛, 代玉强. 数据分析与BP神经网络相结合的乙烯装置智能故障诊断系统[J]. 石油炼制与化工, 2023, 54(6): 97-104. |
| Chang Y N, Wu J T, Dai Y Q. Research on intelligent fault diagnosis system of ethylene plant based on data analysis and bp neural network[J]. Petroleum Processing and Petrochemicals, 2023, 54(6): 97-104. | |
| [4] | 吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8): 1015-1022. |
| Wu J B, Zeng G H, Zhang Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable Energy Resources, 2023, 41(8): 1015-1022. | |
| [5] | 刘星宇, 宋韶旭, 黄向东, 等. Apache TsFile中的短时间序列分组压缩及合并方法[J]. 软件学报, 2025, 36(3): 941-961. |
| Liu X Y, Song S X, Huang X D, et al. Short time series group compression and merging method in Apache TsFile[J]. Journal of Software, 2025, 36(3): 941-961. | |
| [6] | 程翔. 基于机器学习的滚动轴承故障诊断研究[D]. 淮南: 安徽理工大学, 2024. |
| Cheng X. Research on fault diagnosis of rolling bearing based on machine learning[D]. Huainan: Anhui University of Science & Technology, 2024. | |
| [7] | 徐娇. 基于时间序列的高精度外测数据预处理方法研究[D]. 西安: 西安理工大学, 2022. |
| Xu J. Research on high precision external measurement data preprocessing method based on time series[D]. Xi'an: Xi'an University of Technology, 2022. | |
| [8] | 李娟, 赵友刚, 于洋, 等. 含大时滞和噪声的网络化控制系统的最优故障诊断[J]. 自动化学报, 2012, 38(5): 858-864. |
| Li J, Zhao Y G, Yu Y, et al. Optimal fault diagnosis for networked control systems with large time-delays and noises[J]. Acta Automatica Sinica, 2012, 38(5): 858-864. | |
| [9] | 赵凯阳. 基于改进主元分析的微小故障诊断方法研究[D]. 西安: 西安工业大学, 2024. |
| Zhao K Y. Research on micro-fault diagnosis method based on improved principal component analysis[D]. Xi'an: Xi'an Technological University, 2024. | |
| [10] | 刘晰宇. 乙烯精馏塔预测控制技术及其应用研究[D]. 大庆: 东北石油大学, 2023. |
| Liu X Y. Predictive control technology of ethylene distillation column and its application[D]. Daqing: Northeast Petroleum University, 2023. | |
| [11] | 陈德坤. 大型乙烯裂解炉烧焦过程中COT随机分布系统建模与控制研究[D]. 北京: 北京化工大学, 2021. |
| Chen D K. Study on modeling and control of COT random distribution system during coking of large ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
| [12] | 于静, 金秀章. 基于RBF神经网络的PFC-PID主汽温串级预测控制[J]. 华北电力大学学报(自然科学版), 2020, 47(6): 91-98. |
| Yu J, Jin X Z. PFC-PID main steam temperature cascade predictive control based on RBF neural network[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(6): 91-98. | |
| [13] | 韩先尧, 王宁, 申青蓉, 等. 基于累计T 2贡献值的乙烯裂解炉故障诊断分析[J]. 控制工程, 2021, 28(10): 1917-1922. |
| Han X Y, Wang N, Shen Q R, et al. Fault diagnosis analysis of ethylene cracking furnace based on accumulated T 2 contribution value[J]. Control Engineering of China, 2021, 28(10): 1917-1922. | |
| [14] | Li G, Ba Z G, Zhang H Z. Expert system of fault diagnosis for flight simulator based on fault tree analysis[J]. Advanced Materials Research, 2014, 1055: 371-374. |
| [15] | 李长青, 张德龙, 董泽. 主汽温系统线性自抗扰优化控制[J]. 计算机仿真, 2018, 35(8): 81-86. |
| Li C Q, Zhang D L, Dong Z. Optimized linear active disturbance rejection controller design for main steam temperature systems[J]. Computer Simulation, 2018, 35(8): 81-86. | |
| [16] | Lu Y S, Wang F L, Jia M X, et al. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters[J]. Mechanical Systems and Signal Processing, 2016, 81: 259-273. |
| [17] | 任佳, 师琪, 陈晓, 等. 数据驱动的化工过程故障诊断方法综述[C]//第35届中国过程控制会议论文集. 2024. |
| Ren J, Shi Q, Chen X, et al. Review on data-driven based fault detection and diagnosis approaches for chemical industrial process[C]//Proceedings of the 35th China Process Control Conference. 2024. | |
| [18] | 崔潇艺. 基于深度学习的化工过程故障诊断算法研究[D]. 长春: 长春工业大学, 2024. |
| Cui X Y. Research on fault diagnosis algorithm of chemical process based on deep learning[D]. Changchun: Changchun University of Technology, 2024. | |
| [19] | Bachman P, Hjelm R D, Buchwalter W. Learning representations by maximizing mutual information across views[EB/OL]. . |
| [20] | 吕巧莉. 基于自监督对比学习的图像分类算法研究[D]. 保定: 河北大学, 2024. |
| Lyu Q L. Research on image classification algorithm based on self-supervised contrastive learning[D]. Baoding: Hebei University, 2024. | |
| [21] | Tian Y L, Krishnan D, Isola P. Contrastive multiview coding[M]//Vedaldi A, Bischof H, Brox T, et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 776-794. |
| [22] | 李希, 刘喜平, 李旺才, 等. 对比学习研究综述[J]. 小型微型计算机系统, 2023, 44(4): 787-797. |
| Li X, Liu X P, Li W C, et al. Survey on contrastive learning research[J]. Journal of Chinese Computer Systems, 2023, 44(4): 787-797. | |
| [23] | 张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39. |
| Zhang C S, Chen J, Li Q L, et al. Deep contrastive learning: a survey[J]. Acta Automatica Sinica, 2023, 49(1): 15-39. | |
| [24] | He K M, Fan H Q, Wu Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 9726-9735. |
| [25] | Hadsell R, Chopra S, LeCun Y. Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA: IEEE, 2006: 1735-1742. |
| [26] | Wu Z R, Xiong Y J, Yu S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3733-3742. |
| [27] | Dosovitskiy A, Springenberg J T, Riedmiller M, et al. Discriminative unsupervised feature learning with convolutional neural networks[J/OL]. . |
| [28] | Gutmann M, Hyvärinen A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 2010: 297-304. |
| [29] | Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding[J/OL]. . |
| [30] | Pathak D, Krähenbühl P, Donahue J, et al. Context encoders: feature learning by inpainting[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2536-2544. |
| [31] | 李三仟. 基于多视觉特征和卷积神经网络先验信息的图像复原[D]. 南昌: 南昌大学, 2019. |
| Li S Q. Image restoration based on multi-visual features and prior information of convolutional neural network[D]. Nanchang: Nanchang University, 2019. | |
| [32] | Zhang R, Isola P, Efros A A. Colorful image colorization[M]//Leibe B, Matas J, Sebe N, et al. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 649-666. |
| [33] | Tao C X, Wang H H, Zhu X Z, et al. Exploring the equivalence of Siamese self-supervised learning via a unified gradient framework[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: IEEE, 2022: 14411-14420. |
| [34] | Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International Conference on Machine Learning. PMLR, 2020: 1597-1607. |
| [35] | Meybodi Z H, Mohammadi A, Abouei J, et al. CoPo: self-supervised contrastive learning for popularity prediction in MEC networks[C]//2023 24th International Conference on Digital Signal Processing (DSP). Rhodes (Rodos), Greece: IEEE, 2023: 1-5. |
| [36] | Nguyen T, Pham T X, Zhang C N, et al. DimCL: dimensional contrastive learning for improving self-supervised learning[J]. IEEE Access, 2023, 11: 21534-21545. |
| [37] | Li Y F, Hu P, Liu Z T, et al. Contrastive clustering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8547-8555. |
| [38] | Liu J X, Chen S C. TimesURL: self-supervised contrastive learning for universal time series representation learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(12): 13918-13926. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [3] | Min JIANG, Xiangyu SHAO, Ligang ZHENG, Jianliang GAO, Gang LEI. Effect of membrane pressure on the venting explosion process of premixed hydrogen-air gases [J]. CIESC Journal, 2025, 76(6): 2770-2780. |
| [4] | Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering [J]. CIESC Journal, 2025, 76(6): 2781-2790. |
| [5] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
| [6] | Jingxin ZHANG, Jiaojie HE, Qingwang CAI, Ziyi KANG, Yusi YANG, Tong WANG, Xiantao CAO, Liwei YANG. Prediction of COD concentration in wastewater treatment plant effluent based on secondary decomposition and BiLSTM [J]. CIESC Journal, 2025, 76(6): 2859-2871. |
| [7] | Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN [J]. CIESC Journal, 2025, 76(6): 2848-2858. |
| [8] | Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm [J]. CIESC Journal, 2025, 76(6): 3104-3114. |
| [9] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [10] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [11] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [12] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
| [13] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
| [14] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
| [15] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||