| [1] |
郑华. 柠檬酸的生产工艺及在食品中的应用[J]. 现代农业, 2009(5): 102-103.
|
|
Zheng H. Production technology of citric acid and its application in food[J]. Modern Agriculture, 2009(5): 102-103.
|
| [2] |
梁恒宇, 林海龙, 武国庆, 等. 柠檬酸及其衍生物在洗涤剂工业中的应用[J]. 当代化工, 2015, 44(12): 2828-2831.
|
|
Liang H Y, Lin H L, Wu G Q, et al. Application of citric acid and its derivatives in detergent industry[J]. Contemporary Chemical Industry, 2015, 44(12): 2828-2831.
|
| [3] |
贾菲, 郭一飞. 柠檬酸递送药物的研究进展[J]. 现代药物与临床, 2023, 38(8): 2080-2085.
|
|
Jia F, Guo Y F. Advances in citric acid delivery of drugs[J]. Drugs & Clinic, 2023, 38(8): 2080-2085.
|
| [4] |
Salihu R, Abd Razak S I, Ahmad Zawawi N, et al. Citric acid: a green cross-linker of biomaterials for biomedical applications[J]. European Polymer Journal, 2021, 146: 110271.
|
| [5] |
彭超, 姚福伟, 朱威宇, 等. 柠檬酸发酵产业的市场分析与生产现状[J]. 当代化工, 2023, 52(9): 2196-2200.
|
|
Peng C, Yao F W, Zhu W Y, et al. Analysis on production and market of critic acid fermentation industry[J]. Contemporary Chemical Industry, 2023, 52(9): 2196-2200.
|
| [6] |
Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling[J]. Biotechnology Advances, 2007, 25(3): 244-263.
|
| [7] |
刘辰, 刘飞. 柠檬酸提取工艺的探索和氢钙法工业实践[J]. 精细与专用化学品, 2015, 23(1): 19-23.
|
|
Liu C, Liu F. Development of citric acid extraction process and study on calcium hydrogen citrate precipitation method[J]. Fine and Specialty Chemicals, 2015, 23(1): 19-23.
|
| [8] |
Shakya A K, Pillai G, Chakrabarty S. Reinforcement learning algorithms: a brief survey[J]. Expert Systems with Applications, 2023, 231: 120495.
|
| [9] |
Buffet O, Pietquin O, Weng P. Reinforcement learning[M]//A Guided Tour of Artificial Intelligence Research. Cham: Springer International Publishing, 2020: 389-414.
|
| [10] |
Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3): 279-292.
|
| [11] |
Rummery G A, Niranjan M. On-line Q-learning Using Connectionist Systems[M]. Cambridge, UK: University of Cambridge, 1994.
|
| [12] |
Williams R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3): 229-256.
|
| [13] |
Timothy P L, Jonathan J H, Alexander P, et al. Continuous control with deep reinforcement learning[C]// International Conference on Learning Representations. SanDiego, 2015.
|
| [14] |
Gao X S, Yan L, Li Z J, et al. Improved deep deterministic policy gradient for dynamic obstacle avoidance of mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3675-3682.
|
| [15] |
Ying F K, Liu H S, Jiang R X, et al. Trajectory generation for multiprocess robotic tasks based on nested dual-memory deep deterministic policy gradient[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4643-4653.
|
| [16] |
Du Y C, Chen J, Zhao C, et al. A hierarchical framework for improving ride comfort of autonomous vehicles via deep reinforcement learning with external knowledge[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(8): 1059-1078.
|
| [17] |
Ahmed M, Ahmed A, Chee P L, et al. Policy-based reinforcement learning for training autonomous driving agents in urban areas with affordance learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12562-12571.
|
| [18] |
Chen Y, Liu Z Y, Zhang Y C, et al. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4925-4934.
|
| [19] |
Zhang F Y, Yang Q Y, An D. CDDPG: a deep-reinforcement-learning-based approach for electric vehicle charging control[J]. IEEE Internet of Things Journal, 2021, 8(5): 3075-3087.
|
| [20] |
Matsushima T, Furuta H, Matsuo Y, et al. Deployment-efficient reinforcement learning via model-based offline optimization[EB/OL]. 2020, .
|
| [21] |
Yao Y, Xiao L, An Z C, et al. Sample efficient reinforcement learning via model-ensemble exploration and exploitation[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 4202-4208.
|
| [22] |
Brandi S, Fiorentini M, Capozzoli A. Comparison of online and offline deep reinforcement learning with model predictive control for thermal energy management[J]. Automation in Construction, 2022, 135: 104128.
|
| [23] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
| [24] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
|
| [25] |
Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
|
| [26] |
Rodriguez P, Cucurull G, Gonzalez J, et al. Deep pain: exploiting long short-term memory networks for facial expression classification[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3314-3324.
|
| [27] |
Liu Y W, Li D J, Wan S H, et al. A long short-term memory-based model for greenhouse climate prediction[J]. International Journal of Intelligent Systems, 2022, 37(1): 135-151.
|
| [28] |
Huang Y M, Dai X Y, Wang Q W, et al. A hybrid model for carbon price forecastingusing GARCH and long short-term memory network[J]. Applied Energy, 2021, 285: 116485.
|
| [29] |
Lindemann B, Müller T, Vietz H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-655.
|
| [30] |
金其荣. 有机酸发酵工艺学[M]. 北京: 中国轻工业出版社, 1989.
|
|
Jin Q R. Organic acid Fermentation Technology[M]. Beijing: China Light Industry Press, 1989.
|