CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 979-986.DOI: 10.11949/j.issn.0438-1157.20181140
• Process system engineering • Previous Articles Next Articles
Bowen SHI1(),Yanyan YIN2,Fei LIU1()
Received:
2018-10-08
Revised:
2018-12-18
Online:
2019-03-05
Published:
2019-03-05
Contact:
Fei LIU
通讯作者:
刘飞
作者简介:
<named-content content-type="corresp-name">石博文</named-content>(1993—),男,硕士研究生,<email>bowen_1230@126.com</email>|刘飞(1965—),男,博士,教授,<email>fliu@jiangnan.edu.cn</email>
基金资助:
CLC Number:
Bowen SHI, Yanyan YIN, Fei LIU. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process[J]. CIESC Journal, 2019, 70(3): 979-986.
石博文, 尹燕燕, 刘飞. 基于PSO-控制变量参数化混合策略的间歇化工过程优化控制[J]. 化工学报, 2019, 70(3): 979-986.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181140
Parameter | Value |
---|---|
quantity of swarm | 100 |
dimension of particle | 25 |
maximum number of iterations | 100 |
accelerated factor c1 | 2 |
accelerated factor c2 | 2 |
inertia weight | 0.8 |
Table 1 Setting parameters of PSO-CVP algorithm
Parameter | Value |
---|---|
quantity of swarm | 100 |
dimension of particle | 25 |
maximum number of iterations | 100 |
accelerated factor c1 | 2 |
accelerated factor c2 | 2 |
inertia weight | 0.8 |
Ref. | Method | Optimum |
---|---|---|
[14] | SQP | 0.610775 |
[15] | ACSO | 0.61045 |
[16] | OC | 0.61 |
[17] | IACA(N=10) | 0.61 |
[17] | IACA(N=20) | 0.6104 |
this work | PSO-CVP | 0.6105359 |
Ref. | Method | Optimum |
---|---|---|
[14] | SQP | 0.610775 |
[15] | ACSO | 0.61045 |
[16] | OC | 0.61 |
[17] | IACA(N=10) | 0.61 |
[17] | IACA(N=20) | 0.6104 |
this work | PSO-CVP | 0.6105359 |
Parameter | Meaning | Value |
---|---|---|
| nutrients feed | 100 |
k s/(g2/L2) | matrix inhibition | 111.5 |
Y | increased quantities of yield | 0.51 |
k CN/(g/L) | constant | 14.35 |
f IO/(g/L) | constant | 0.005 |
k 11/h-1 | constant | 0.09 |
μ max/h-1 | maximum growth rate | 1.0 |
f max/h-1 | maximum protein yield | 0.233 |
k cr/(g/L) | constant | 0.22 |
k 1 x /(g/L) | constant | 0.034 |
kI /(g/L) | constant | 0.022 |
Table 3 Lee-Ramirez reactor parameters
Parameter | Meaning | Value |
---|---|---|
| nutrients feed | 100 |
k s/(g2/L2) | matrix inhibition | 111.5 |
Y | increased quantities of yield | 0.51 |
k CN/(g/L) | constant | 14.35 |
f IO/(g/L) | constant | 0.005 |
k 11/h-1 | constant | 0.09 |
μ max/h-1 | maximum growth rate | 1.0 |
f max/h-1 | maximum protein yield | 0.233 |
k cr/(g/L) | constant | 0.22 |
k 1 x /(g/L) | constant | 0.034 |
kI /(g/L) | constant | 0.022 |
Parameter | Value |
---|---|
quantity of swarm | 200 |
dimension of particle | 30 |
maximum number of iterations | 500 |
accelerated factor c1 | 2 |
accelerated factor c2 | 2 |
inertia weight | 0.8 |
Table 4 Setting parameters of PSO-CVP algorithm
Parameter | Value |
---|---|
quantity of swarm | 200 |
dimension of particle | 30 |
maximum number of iterations | 500 |
accelerated factor c1 | 2 |
accelerated factor c2 | 2 |
inertia weight | 0.8 |
Ref. | Method | Optimum |
---|---|---|
[19] | FIDP | 6.16 |
[20] | GA | 6.1504 |
[21] | biogeographic algorithm | 6.15 |
[22] | CVP | 6.15123355 |
[23] | multiple shooting | 6.15153759 |
this work | PSO-CVP | 6.15154923 |
Ref. | Method | Optimum |
---|---|---|
[19] | FIDP | 6.16 |
[20] | GA | 6.1504 |
[21] | biogeographic algorithm | 6.15 |
[22] | CVP | 6.15123355 |
[23] | multiple shooting | 6.15153759 |
this work | PSO-CVP | 6.15154923 |
1 | 庄绪君, 李宏光 . 基于遗传算法与迭代动态规划混合策略的青霉素发酵过程优化控制[J]. 计算机与应用化学, 2013, 30(9): 1051-1054. |
Zhuang X J , Li H G . Optimal control of penicillin fermentation process based on genetic algorithm and iterative dynamic programming[J]. Computer and Applied Chemistry, 2013, 30(9):1051-1054. | |
2 | Pollard J P , Sargent R W H . Off line computation of optimum controls for a plate distillation column[J]. Automatica, 1970, 6(1): 59-76. |
3 | Sargent R W H , Sullivan G R . The development of an efficient optimal control package[J]. Nonlinear and Stochastic Programming, 1979, 13(7): 158-168. |
4 | Vassiliadis V S , Sargent R W H , Pantelides C C . Solution of a class of multistage dynamic optimization problems(Ⅱ): Problems with path constraints[J]. I&EC Research, 1994, 33(9): 2123-2133. |
5 | Martin S , Klaus S , Thomas B , et al . Dynamic optimization using adaptive control vector parameterization[J]. Computers & Chemical Engineering, 2005, 29(8): 1731-1751. |
6 | Wang P , Tian X M . Enhanced control vector parameterization method and its application in dynamic optimization[J]. Control & Decision, 2009, 24(11): 1757-1760. |
7 | Chen X , Du W L , Huaglory T , et al . Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization[J]. IEEE Transactions on Automation Science & Engineering, 2014, 11(4): 1289-1299. |
8 | Teo K L , Jennings L S , Lee H W J , et al . The control parametrization enhancing transform for constrained optimal control problems[J].J. Austral. Math. Soc. Sen. B, 1999, 40: 314-335. |
9 | Li G D , Liu P , Liu X G . A control parameterization approach with variable time nodes for optimal control problems[J]. Asian Journal of Control, 2016, 18(3): 976-984. |
10 | Binder T , Cruse A , Cruz Villar C A , et al . Dynamic optimization using a wavelet based adaptive control[J]. Computers and Chemical Engineering, 2000, 24: 1201-1207. |
11 | Liu P , Li G D , Liu X G . Fast engineering optimization: a novel highly effective control parameterization approach for industrial dynamic processes[J]. Isa Transactions, 2015, 58: 248-254. |
12 | Sun F , Zhong W M , Cheng H , et al . Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes[J]. Chinese Journal of Chemical Engineering , 2013, 21(1): 64-71. |
13 | 王东风, 孟丽 . 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552-1561. |
Wang D F , Meng L . Performance analysis and parameter selection of particle swarm optimization algorithm [J]. Journal of Automation, 2016, 42(10): 1552-1561. | |
14 | Logsdon J S , Biegler L T . A relaxed reduced space SQP strategy for dynamic optimization problems[J]. Computers & Chemical Engineering, 1993, 17(4): 367-372. |
15 | Rajesh J , Gupta K , Kusumakar H S , et al . Dynamic optimization of chemical processes using ant colony framework[J]. Computers & Chemistry, 2001, 25(6): 583-595. |
16 | Renfro J G , Morshedi A M , Asbjornsen O A . Simultaneous optimization and solution of systems described by differential algebraic equations[J]. Computers & Chemical Engineering, 1987, 11(5): 503-517. |
17 | Zhang B , Chen D Z , Zhao W . Iterative ant-colony algorithm and its application to dynamic optimization of chemical process[J]. Computers & Chemical Engineering, 2005, 29(10): 2078-2086. |
18 | Lee J , Ramirez W F . Optimal fed-batch control of induced foreign protein production by recombinant bacteria[J]. AIChE Journal, 1994, 40(5): 899-907. |
19 | Tholudur A , Ramirez W F . Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm[J]. International Journal of Control, 1997, 68(5): 1115-1128. |
20 | Sarkar D , Modak J M . Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables[J]. Computers & Chemical Engineering, 2004, 28(5): 789-798. |
21 | Nikumb S , Ghosh S , Jayaraman V K , et al . Biogeography-based optimization for dynamic optimization of chemical reactors[M]// Applications of Mataheuristics in Process Engineering, Springer ,2014: 201-216. |
22 | Hirmaje T , Balsacanto E , Banga J R . DOTcvpSB, a software toolbox for dynamic optimization in systems biology[J]. BMC Bioinformatics, 2009, 10: 199. |
23 | 黎向宇 . 基于时间网格重构的多重打靶最优控制策略研究[D]. 杭州: 浙江大学, 2017. |
Li X Y . Study on optimal control strategy for multiple targets based on time grid reconstruction[D]. Hangzhou: Zhejiang University, 2017. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[9] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[15] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||