CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2828-2837.DOI: 10.11949/0438-1157.20241255

• Process system engineering • Previous Articles     Next Articles

Research on intelligent prediction of water quality in sewage treatment process based on event triggering

Xinyi LI1,2(), Gongming WANG1,2(), Zipeng WANG1,2, Junfei QIAO1,2   

  1. 1.Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China
    2.School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2024-11-06 Revised:2024-11-26 Online:2025-07-09 Published:2025-06-25
  • Contact: Gongming WANG

基于事件触发的污水处理过程水质智能预测研究

李欣怡1,2(), 王功明1,2(), 王自鹏1,2, 乔俊飞1,2   

  1. 1.北京工业大学智慧环保北京实验室,北京 100124
    2.北京工业大学信息科学技术学院,北京 100124
  • 通讯作者: 王功明
  • 作者简介:李欣怡(2003—),女,硕士研究生,XINYILI599@emails.bjut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62373018);北京市自然科学基金面上项目(4232043);北京市博士后科研活动资助项目(2022ZZ-074);朝阳区博士后科研资助项目(2022ZZ-39)

Abstract:

Aiming at the problem that the non-stationary and multi-working conditions of wastewater treatment process (WWTP) make it difficult to predict water quality efficiently and accurately, this paper proposes an event-triggered fuzzy neural network (ETFNN) model to predict total phosphorus (TP) of WWTP. This method can perceive the non-stationary and multi-working conditions during the evolution process of the TP state in the form of events, thereby achieving efficiently-accurately tracking and prediction. First, the fuzzy neural network (FNN) is trained using the historical data of total phosphorus, and events are defined according to the trend of training error changes that can reflect the switching of multiple operating conditions. Second, an event-triggered learning is designed to adaptively update the parameters of FNN, where the different learning steps will be triggered when some different events occur. This event-triggered learning can perceive and recognize the non-stationary and multiple operational conditions in WWTP. Meanwhile, the convergence analysis of the ETFNN model is given by analyzing the performance potential function of the equivalent Markov decision process. Finally, the ETFNN is considered as the soft-sensing model to predict TP of WWTP, and then a comprehensive analysis is given as well. Experimental results show that the proposed ETFNN-based soft-sensing model not only improves the accuracy of TP prediction, but also identifies and skips invalid data in the form of events, thereby reducing the computational complexity of the prediction model.

Key words: wastewater treatment, water-quality prediction, event-triggered, fuzzy neural network, Markov decision, performance potential function

摘要:

针对污水处理过程非平稳性、多工况性导致的水质难以高效、精准预测的问题,提出了一种事件触发的模糊神经网络(event-triggered fuzzy neural network,ETFNN)总磷预测模型设计方法,以事件的形式感知污水处理总磷状态演化过程的非平稳性和多工况性,进而实现对总磷状态高效、精准的跟踪和预测。首先,利用总磷历史数据对模糊神经网络(fuzzy neural network,FNN)进行训练,根据能够反映多工况切换的训练误差变化趋势来定义事件;其次,设计事件触发的模型参数更新策略,当不同事件发生时,模型会触发变步长的参数更新行为,即实现对污水处理运行非平稳性、多工况性的感知和识别;同时,通过构造等效Markov决策过程的性能势函数证明了ETFNN模型学习过程的收敛性;最后,将ETFNN作为软测量模型,用于实际污水处理过程出水总磷建模与预测,并进行了综合分析。实验结果表明,所提出的ETFNN软测量模型不仅能提高总磷预测精度,还能以事件的形式识别并跳过无效数据,进而降低预测模型的计算复杂度。

关键词: 污水处理, 水质预测, 事件触发, 模糊神经网络, Markov决策, 性能势函数

CLC Number: