CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2848-2858.DOI: 10.11949/0438-1157.20241275
• Process system engineering • Previous Articles Next Articles
Wenliang LI1(
), Cheng JI2, Chen LIANG1, Sichen WU1, Shilin CHEN1, Wei SUN2, Chi ZHAI1(
)
Received:2024-11-09
Revised:2025-02-08
Online:2025-07-09
Published:2025-06-25
Contact:
Chi ZHAI
李文亮1(
), 纪成2, 梁晨1, 吴思辰1, 陈石林1, 孙巍2, 翟持1(
)
通讯作者:
翟持
作者简介:李文亮(1999—),男,硕士研究生,2455364688@qq.com
CLC Number:
Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN[J]. CIESC Journal, 2025, 76(6): 2848-2858.
李文亮, 纪成, 梁晨, 吴思辰, 陈石林, 孙巍, 翟持. 基于TDMN的青霉素浓度在线软测量[J]. 化工学报, 2025, 76(6): 2848-2858.
Add to citation manager EndNote|Ris|BibTeX
| 变量编号 | 变量描述 | 变量编号 | 变量描述 |
|---|---|---|---|
| 1 | 通气速率/(L/h) | 13 | 容器质量/kg |
| 2 | 糖进料速率/(L/h) | 14 | pH |
| 3 | 酸流量/(L/h) | 15 | 温度/K |
| 4 | 基础流率/(L/h) | 16 | 产生的热量/kJ |
| 5 | 加热/冷却水流量/(L/h) | 17 | 尾气中二氧化碳含量/% |
| 6 | 采暖水流量/(L/h) | 18 | PAA流/(L/h) |
| 7 | 注射用水/稀释水流量/(L/h) | 19 | 油流/(L/h) |
| 8 | 气头压力/bar | 20 | 耗氧速率/(g/min) |
| 9 | 倾倒培养基流量/(L/h) | 21 | 废气中的氧气百分比/% |
| 10 | 底物浓度/(g/h) | 22 | 析碳速率/(g/h) |
| 11 | 溶解氧浓度/(mg/h) | 23 | 青霉素浓度/(g/L) |
| 12 | 容器体积/L |
Table 1 Description of process variables in the industrial penicillin fermentation process
| 变量编号 | 变量描述 | 变量编号 | 变量描述 |
|---|---|---|---|
| 1 | 通气速率/(L/h) | 13 | 容器质量/kg |
| 2 | 糖进料速率/(L/h) | 14 | pH |
| 3 | 酸流量/(L/h) | 15 | 温度/K |
| 4 | 基础流率/(L/h) | 16 | 产生的热量/kJ |
| 5 | 加热/冷却水流量/(L/h) | 17 | 尾气中二氧化碳含量/% |
| 6 | 采暖水流量/(L/h) | 18 | PAA流/(L/h) |
| 7 | 注射用水/稀释水流量/(L/h) | 19 | 油流/(L/h) |
| 8 | 气头压力/bar | 20 | 耗氧速率/(g/min) |
| 9 | 倾倒培养基流量/(L/h) | 21 | 废气中的氧气百分比/% |
| 10 | 底物浓度/(g/h) | 22 | 析碳速率/(g/h) |
| 11 | 溶解氧浓度/(mg/h) | 23 | 青霉素浓度/(g/L) |
| 12 | 容器体积/L |
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.274 | 0.131 | 0.337 | 0.843 |
| RNN | 0.169 | 0.069 | 0.238 | 0.927 |
| LSTM | 0.156 | 0.047 | 0.203 | 0.939 |
| TDMN | 0.127 | 0.037 | 0.176 | 0.956 |
Table 2 Average prediction evaluation indexes of penicillin concentration of 60 test batches by different methods
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.274 | 0.131 | 0.337 | 0.843 |
| RNN | 0.169 | 0.069 | 0.238 | 0.927 |
| LSTM | 0.156 | 0.047 | 0.203 | 0.939 |
| TDMN | 0.127 | 0.037 | 0.176 | 0.956 |
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.219 | 0.105 | 0.324 | 0.886 |
| RNN | 0.153 | 0.054 | 0.232 | 0.952 |
| LSTM | 0.119 | 0.035 | 0.187 | 0.961 |
| TDMN | 0.095 | 0.022 | 0.148 | 0.999 |
Table 3 Online test results of four models
| 模型 | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| ANN | 0.219 | 0.105 | 0.324 | 0.886 |
| RNN | 0.153 | 0.054 | 0.232 | 0.952 |
| LSTM | 0.119 | 0.035 | 0.187 | 0.961 |
| TDMN | 0.095 | 0.022 | 0.148 | 0.999 |
| [1] | Wang Q J, Zhang Z, Xu G R, et al. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water[J]. Journal of Hazardous Materials, 2021, 413: 125385. |
| [2] | Yang L, Zhang S H, Chen Z Q, et al. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge[J]. Bioresource Technology, 2016, 204: 185-191. |
| [3] | Jiang Q C, Wang Z W, Yan S F, et al. Data-driven soft sensing for batch processes using neural network-based deep quality-relevant representation learning[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(4): 602-611. |
| [4] | 张梦轩, 刘洪辰, 王敏, 等. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1776. |
| Zhang M X, Liu H C, Wang M, et al. Intelligence hybrid modeling method and applications in chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. | |
| [5] | Knight M A, Hutchings M R, White P C L, et al. A mechanistic model captures livestock trading, disease dynamics, and compensatory behaviour in response to control measures[J]. Journal of Theoretical Biology, 2022, 539: 111059. |
| [6] | 曾贲, 房霄, 孔德帅, 等. 一种数据驱动的对抗博弈智能体建模方法[J]. 系统仿真学报, 2021, 33(12): 2838-2845. |
| Zeng B, Fang X, Kong D S, et al. A data-driven modeling method for game adversity agent[J]. Journal of System Simulation, 2021, 33(12): 2838-2845. | |
| [7] | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
| Yao Y M, Luo W J, Dai Y Y. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
| [8] | 戚子豪, 钟文琪, 陈曦, 等. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051. |
| Qi Z H, Zhong W Q, Chen X, et al. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling[J]. CIESC Journal, 2022, 73(5): 2039-2051. | |
| [9] | 张磊, 贺丁, 刘琳琳, 等. 基于模型的化工产品设计方法: 综述与展望[J]. 化工进展, 2021, 40(4): 1746-1754. |
| Zhang L, He D, Liu L L, et al. Model-based chemical product design: review and perspectives[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1746-1754. | |
| [10] | Shokry A, Pérez-Moya M, Graells M, et al. Data-driven dynamic modeling of batch processes having different initial conditions and missing measurements[C]//27th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier, 2017: 433-438. |
| [11] | Mi X J, Lv T X, Tian Y, et al. Multi-sensor data fusion based on soft likelihood functions and OWA aggregation and its application in target recognition system[J]. ISA Transactions, 2021, 112: 137-149. |
| [12] | 陈琳, 周利, 吉旭. 基于深度学习的催化裂化过程建模方法[J]. 西安石油大学学报(自然科学版), 2023, 38(4): 94-103. |
| Chen L, Zhou L, Ji X. Modelling method based on deep learning for fluid catalytic cracking processes[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(4): 94-103. | |
| [13] | Souza F A A, Araújo R, Mendes J. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152: 69-79. |
| [14] | He Y L, Tian Y, Xu Y, et al. Novel soft sensor development using echo state network integrated with singular value decomposition: application to complex chemical processes[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200: 103981. |
| [15] | Mota R, Nadri M, Hammouri H. Observer design for implicit state affine systems up to output injection[J]. IFAC Proceedings Volumes, 2011, 44(1): 697-702. |
| [16] | Wang W, Yang C H, Han J, et al. A soft sensor modeling method with dynamic time-delay estimation and its application in wastewater treatment plant[J]. Biochemical Engineering Journal, 2021, 172: 108048. |
| [17] | Wang Y L, Liu D J, Liu C L, et al. Dynamic historical information incorporated attention deep learning model for industrial soft sensor modeling[J]. Advanced Engineering Informatics, 2022, 52: 101590. |
| [18] | Li X Y, Yi X H, Liu Z H, et al. Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system[J]. Journal of Cleaner Production, 2021, 294: 126343. |
| [19] | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
| [20] | Mei P, Li M, Zhang Q, et al. Prediction model of drinking water source quality with potential industrial-agricultural pollution based on CNN-GRU-attention[J]. Journal of Hydrology, 2022, 610: 127934. |
| [21] | Liu C L, Wang K, Ye L J, et al. Deep learning with neighborhood preserving embedding regularization and its application for soft sensor in an industrial hydrocracking process[J]. Information Sciences, 2021, 567: 42-57. |
| [22] | Zheng B W, Zhou D W, Ye H J, et al. Preserving locality in vision transformers for class incremental learning[C]//2023 IEEE International Conference on Multimedia and Expo (ICME). Brisbane, Australia: IEEE, 2023: 1157-1162. |
| [23] | Wang Y M, Chen X Y, Wang X, et al. Radar detection self-evolution based on incremental learning in time-varying clutter environments[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2523613. |
| [24] | Xie J J, Pan B, Xu X, et al. MiSSNet: memory-inspired semantic segmentation augmentation network for class-incremental learning in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5607913. |
| [25] | Ji C, Ma F Y, Wang J D, et al. Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development[J]. Computers & Chemical Engineering, 2023, 170: 108125. |
| [26] | Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7233-7242. |
| [27] | Wang Y B, Long M S, Wang J M, et al. PredRNN[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: ACM, 2017: 879-888. |
| [28] | Goldrick S, Duran-Villalobos C A, Jankauskas K, et al. Modern day monitoring and control challenges outlined on an industrial-scale benchmark fermentation process[J]. Computers & Chemical Engineering, 2019, 130: 106471. |
| [29] | Birol G, Cenk Ü, Ali Ç. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
| [30] | Melo A, Câmara M M, Clavijo N, et al. Open benchmarks for assessment of process monitoring and fault diagnosis techniques: a review and critical analysis[J]. Computers & Chemical Engineering, 2022, 165: 107964. |
| [31] | Wang Z X, He Q P, Wang J. Comparison of variable selection methods for PLS-based soft sensor modeling[J]. Journal of Process Control, 2015, 26: 56-72. |
| [32] | Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London: Routledge, 2018 |
| [33] | Jin H P, Chen X G, Wang L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7320-7345. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [3] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [4] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| [5] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [6] | Hao HUANG, Wen WANG, Peiyun LI. Research on properties of wankel expanders under series connection [J]. CIESC Journal, 2025, 76(S1): 435-443. |
| [7] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [8] | Hao LIU, Lin WANG, Hao DING, Jiayi GENG. Vapor-liquid equilibrium study of R1150+R1234ze(E) binary system at 223.15—253.15 K [J]. CIESC Journal, 2025, 76(S1): 1-8. |
| [9] | Jingxin ZHANG, Jiaojie HE, Qingwang CAI, Ziyi KANG, Yusi YANG, Tong WANG, Xiantao CAO, Liwei YANG. Prediction of COD concentration in wastewater treatment plant effluent based on secondary decomposition and BiLSTM [J]. CIESC Journal, 2025, 76(6): 2859-2871. |
| [10] | Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering [J]. CIESC Journal, 2025, 76(6): 2781-2790. |
| [11] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
| [12] | Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace [J]. CIESC Journal, 2025, 76(6): 2733-2742. |
| [13] | Jiacheng LOU, Fucheng CHANG, Yeming LIU, Zhibin LI, Xi LI, Huixiong LI. Modeling and simulation study on transient response characteristics of water wall in 1000 MW ultra-supercritical once-through boiler [J]. CIESC Journal, 2025, 76(6): 2638-2651. |
| [14] | Lina ZHU, Maodong MIAO, Sai JIN, Zhonggai ZHAO, Fuxin SUN, Guiyang SHI, Fei LIU. Optimal control for neutralization process of citric acid through tricalcium reaction based on reinforcement learning algorithm [J]. CIESC Journal, 2025, 76(6): 2838-2847. |
| [15] | Yiyun ZHANG, Hengzhi CHEN, Yang LI, Chang'an MU, Quanhai WANG. Effects of turbulence on radial gas diffusion in binary particle fluidized bed [J]. CIESC Journal, 2025, 76(6): 2559-2568. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||