CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4042-4051.DOI: 10.11949/0438-1157.20250229
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuntao ZHOU1,2(
), Lifeng CUI2, Jie ZHANG2, Fuhong YU2, Xingang LI1, Ye TIAN1(
)
Received:2025-03-10
Revised:2025-04-08
Online:2025-09-17
Published:2025-08-25
Contact:
Ye TIAN
周运桃1,2(
), 崔丽凤2, 张杰2, 于富红2, 李新刚1, 田野1(
)
通讯作者:
田野
作者简介:周运桃(1988—),男,博士,zhouyuntao1005@163.com
基金资助:CLC Number:
Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2025, 76(8): 4042-4051.
周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | Cu/%(质量)① | Ga/%(质量)① | 颗粒尺寸/nm② | 比表面积/(m2·g-1) | 平均孔体积/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|---|---|---|
| CuCeO | 14.3 | 0 | 7.9 | 35.0 | 0.4 | 44.0 |
| 0.03GaCuCeO | 14.0 | 0.5 | 10.3 | 33.5 | 0.3 | 34.6 |
| 0.07GaCuCeO | 13.9 | 1.1 | 11.0 | 29.1 | 0.2 | 35.7 |
| 0.14GaCuCeO | 13.4 | 2.3 | 14.0 | 28.1 | 0.3 | 43.6 |
Table 1 The composition and physical parameters of the catalysts
| 催化剂 | Cu/%(质量)① | Ga/%(质量)① | 颗粒尺寸/nm② | 比表面积/(m2·g-1) | 平均孔体积/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|---|---|---|
| CuCeO | 14.3 | 0 | 7.9 | 35.0 | 0.4 | 44.0 |
| 0.03GaCuCeO | 14.0 | 0.5 | 10.3 | 33.5 | 0.3 | 34.6 |
| 0.07GaCuCeO | 13.9 | 1.1 | 11.0 | 29.1 | 0.2 | 35.7 |
| 0.14GaCuCeO | 13.4 | 2.3 | 14.0 | 28.1 | 0.3 | 43.6 |
Fig.3 TEM image[(a)—(d)], HRTEM image[(e)—(h)] and element mappings[(i)—(l)] of Cu, Ce, Ga, O for CuCeO and xGaCuCeO (x = 0.03,0.07,0.14) catalysts (each line from left to right are the CuCeO, 0.03GaCuCeO, 0.07GaCuCeO and 0.14GaCuCeO)
| 催化剂 | Tβ/℃ | CO2吸附量/(μmol·g-1) | Ce3+/( Ce3++ Ce4+) | Oads/(Oads+Olat) | I580/I450 |
|---|---|---|---|---|---|
| CuCeO | 378 | 20.1 | 13.7 | 32.5 | 0.64 |
| 0.03GaCuCeO | 391 | 15.9 | 14.4 | 35.1 | 0.68 |
| 0.07GaCuCeO | 408 | 12.5 | 15.6 | 36.8 | 0.72 |
| 0.14GaCuCeO | 410 | 11.3 | 18.2 | 38.6 | 0.79 |
Table 2 The parameters of CO2 adsorption and surface chemical valence state for catalysts
| 催化剂 | Tβ/℃ | CO2吸附量/(μmol·g-1) | Ce3+/( Ce3++ Ce4+) | Oads/(Oads+Olat) | I580/I450 |
|---|---|---|---|---|---|
| CuCeO | 378 | 20.1 | 13.7 | 32.5 | 0.64 |
| 0.03GaCuCeO | 391 | 15.9 | 14.4 | 35.1 | 0.68 |
| 0.07GaCuCeO | 408 | 12.5 | 15.6 | 36.8 | 0.72 |
| 0.14GaCuCeO | 410 | 11.3 | 18.2 | 38.6 | 0.79 |
| 催化剂 | 温度/ ℃ | 压力/MPa | CO2 转化率/% | CH3OH 选择性/% | 文献 |
|---|---|---|---|---|---|
| Cu/CeO2 | 250 | 3.0 | 1.6 | 50.0 | [ |
| Pd/CeO2 | 240 | 3.0 | 6.2 | 30.0 | [ |
| Cu0.3Zr0.3Ce | 240 | 3.0 | 4.1 | 55.3 | [ |
| Ga7.5Cu7.5 | 225 | 5.0 | 3.1 | 55.0 | [ |
| 0.03GaCuCeO | 240 | 3.0 | 2.8 | 61.2 | 本工作 |
| 0.07GaCuCeO | 220 | 3.0 | 1.6 | 77.6 | 本工作 |
| 0.14GaCuCeO | 220 | 3.0 | 1.8 | 81.6 | 本工作 |
Table 3 Comparison of different CeO2-based catalysts for CO2 hydrogenation to methanol
| 催化剂 | 温度/ ℃ | 压力/MPa | CO2 转化率/% | CH3OH 选择性/% | 文献 |
|---|---|---|---|---|---|
| Cu/CeO2 | 250 | 3.0 | 1.6 | 50.0 | [ |
| Pd/CeO2 | 240 | 3.0 | 6.2 | 30.0 | [ |
| Cu0.3Zr0.3Ce | 240 | 3.0 | 4.1 | 55.3 | [ |
| Ga7.5Cu7.5 | 225 | 5.0 | 3.1 | 55.0 | [ |
| 0.03GaCuCeO | 240 | 3.0 | 2.8 | 61.2 | 本工作 |
| 0.07GaCuCeO | 220 | 3.0 | 1.6 | 77.6 | 本工作 |
| 0.14GaCuCeO | 220 | 3.0 | 1.8 | 81.6 | 本工作 |
| [1] | 阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学, 2024, 44(1): 404-416. |
| Yang P J, Peng S, Wang J, et al. Carbon capture, utilization and storage(CCUS) technology development status and application prospects[J]. China Environmental Science, 2024, 44(1): 404-416. | |
| [2] | Nagireddi S, Agarwal J R, Vedapuri D. Carbon dioxide capture, utilization, and sequestration: current status, challenges, and future prospects for global decarbonization[J]. ACS Engineering Au, 2024, 4(1): 22-48. |
| [3] | Hu J T, Cai Y F, Xie J H, et al. Selectivity control in CO2 hydrogenation to one-carbon products[J]. Chem, 2024, 10(4): 1084-1117. |
| [4] | De S, Dokania A, Ramirez A, et al. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis, 2020, 10(23): 14147-14185. |
| [5] | Kaliyaperumal A, Gupta P, Prasad Y S S, et al. Recent progress and perspective of the electrochemical conversion of carbon dioxide to alcohols[J]. ACS Engineering Au, 2023, 3(6): 403-425. |
| [6] | Ganji P, Chowdari R K, Likozar B. Photocatalytic reduction of carbon dioxide to methanol: carbonaceous materials, kinetics, industrial feasibility, and future directions[J]. Energy & Fuels, 2023, 37(11): 7577-7602. |
| [7] | 贾晨喜, 邵敬爱, 白小薇, 等, 二氧化碳加氢制甲醇铜基催化剂性能的研究进展 [J]. 化工进展, 2020, 39(9): 3658-3668. |
| Jia C X, Shao J A, Bai X W, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
| [8] | 时永兴, 林刚, 孙晓航, 等. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
| Shi Y X, Lin G, Sun X H, et al. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. | |
| [9] | Liu X Y, Wang H W, Lu J L. Recent progress in understanding the nature of active sites for methanol synthesis over Cu/ZnO catalysts[J]. Journal of Catalysis, 2024, 436: 115561. |
| [10] | Singh R, Pandey V, Pant K K. Promotional role of oxygen vacancy defects and Cu-Ce interfacial sites on the activity of Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ChemCatChem, 2022, 14(24): e202201053. |
| [11] | Jiang F, Jiang F, Wang S S, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2-supported Pd catalysts[J]. ChemCatChem, 2022, 14(16): e202200422. |
| [12] | Chang K, Zhang H C, Cheng M J, et al. Application of ceria in CO2 conversion catalysis[J]. ACS Catalysis, 2020, 10(1): 613-631. |
| [13] | 周运桃, 王洪星, 李新刚, 等. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
| Zhou Y T, Wang H X, Li X G, et al. Application and research progress of CeO2 support in CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. | |
| [14] | Hengne A M, Yuan D J, Date N S, et al. Preparation and activity of copper-gallium nanocomposite catalysts for carbon dioxide hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21331-21340. |
| [15] | Yang C S, Ma S C, Liu Y M, et al. Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides[J]. Nature Communications, 2024, 15(1): 540. |
| [16] | Dai H, Zhang A H, Xiong S Q, et al. The catalytic performance of Ga2O3-CeO2 composite oxides over reverse water gas shift reaction[J]. ChemCatChem, 2022, 14(6): e202200049. |
| [17] | Wang J J, Tang C Z, Li G N, et al. High-performance MaZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. |
| [18] | Sha F, Tang C Z, Tang S, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2021, 404: 383-392. |
| [19] | Feng W H, Yu M M, Wang L J, et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrO x oxide catalysts[J]. ACS Catalysis, 2021, 11(8): 4704-4711. |
| [20] | 黄静静, 蔡金孟, 马奎, 等. Ga2O3改性Cu/SiO2催化剂降低水蒸气催化重整产物中CO选择性[J]. 物理化学学报, 2019, 35(4): 431-441. |
| Huang J J, Cai J M, Ma K, et al. Ga2O3-modified Cu/SiO2 catalysts with low CO selectivity for catalytic steam reforming[J]. Acta Physico-Chimica Sinica, 2019, 35(4): 431-441. | |
| [21] | Deng B W, Song H, Peng K, et al. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120519. |
| [22] | Li H J, Xiao Y H, Xiao J L, et al. Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts[J]. Chinese Journal of Catalysis, 2023, 54: 178-187. |
| [23] | Singh R, Tripathi K, Pant K K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289. |
| [24] | 戴文华, 辛忠, Si掺杂对Cu/ZrO 2 催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
| Dai W H, Xin Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022, 73(8): 3586-3596 | |
| [25] | 张家琳, 徐大为, 高越, 等. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321. |
| Zhang J L, Xu D W, Gao Y, et al. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams[J]. CIESC Journal, 2024, 75(1): 312-321. | |
| [26] | Gómez D, Vergara T, Ortega M, et al. Interdependence between the extent of Ga promotion, the nature of active sites, and the reaction mechanism over Cu catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2024, 14(20): 15265-15278. |
| [27] | Lam E, Noh G, Chan K W, et al. Enhanced CH3OH selectivity in CO2 hydrogenation using Cu-based catalysts generated via SOMC from GaⅢ single-sites[J]. Chemical Science, 2020, 11(29): 7593-7598. |
| [28] | Zhang Y D, Liang L, Chen Z Y, et al. Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS[J]. Applied Surface Science, 2020, 516: 146035. |
| [29] | Zhu J D, Su Y Q, Chai J C, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544. |
| [30] | Jiang F, Wang S S, Liu B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509. |
| [31] | Zhang J P, Sun X H, Wu C Y, et al. Engineering Cu+/CeZrO x interfaces to promote CO2 hydrogenation to methanol[J]. Journal of Energy Chemistry, 2023, 77: 45-53. |
| [32] | Attada Y, Velisoju V K, Mohamed H O, et al. Dual experimental and computational approach to elucidate the effect of Ga on Cu/CeO2-ZrO2 catalyst for CO2 hydrogenation[J]. Journal of CO2 Utilization, 2022, 65: 102251. |
| [33] | Han X Y, Xiao T T, Li M S, et al. Synergetic interaction between single-atom Cu and Ga2O3 enhances CO2 hydrogenation to methanol over CuGaZrO x [J]. ACS Catalysis, 2023, 13(20): 13679-13690. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [3] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [4] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [5] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [6] | Min YANG, Xinwei DUAN, Junhong WU, Jie MI, Jiancheng WANG, Mengmeng WU. COS catalyzed hydrolysis performance and deactivation mechanism of Sm2O3/γ-Al2O3 catalysts [J]. CIESC Journal, 2025, 76(8): 4061-4070. |
| [7] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [8] | Zeming DONG, Juwei LOU, Nan WANG, Liangqi CHEN, Jiangfeng WANG, Pan ZHAO. Research on thermodynamic properties of supercritical compressed carbon dioxide energy storage system with waste heat recovery [J]. CIESC Journal, 2025, 76(7): 3477-3486. |
| [9] | Zhenning FAN, Haining LIANG, Maoli FANG, Yifan HE, Shuai YU, Xingqing YAN, Jiaran AN, Fanfan QIAO, Jianliang YU. Research and comparison of throttling and venting characteristics of CO2 pipelines in different phase states [J]. CIESC Journal, 2025, 76(7): 3742-3751. |
| [10] | Hongxin DING, Wenxiang GAN, Yongyang ZHAO, Runze JIA, Ziqi KANG, Yulong ZHAO, Yong XIANG. Corrosion mechanisms of X65 steel welded joints in supercritical CO2 and H2O-rich phases [J]. CIESC Journal, 2025, 76(7): 3426-3435. |
| [11] | Fengfeng GAO, Huifeng CHENG, Bo YANG, Xiaogang HAO. Electrically driven NiFeMn LDH/CNTs/PVDF film electrode for selective extraction of tungstate ions [J]. CIESC Journal, 2025, 76(7): 3350-3360. |
| [12] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [13] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [14] | Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery [J]. CIESC Journal, 2025, 76(5): 2055-2069. |
| [15] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||