CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3350-3360.DOI: 10.11949/0438-1157.20241421
• Separation engineering • Previous Articles Next Articles
Fengfeng GAO1,2(
), Huifeng CHENG1, Bo YANG3, Xiaogang HAO1,2,4(
)
Received:2024-12-09
Revised:2025-01-23
Online:2025-08-13
Published:2025-07-25
Contact:
Xiaogang HAO
高凤凤1,2(
), 程慧峰1, 杨博3, 郝晓刚1,2,4(
)
通讯作者:
郝晓刚
作者简介:高凤凤(1988—),女,博士,副教授,gaofengfeng@tyut.edu.cn
基金资助:CLC Number:
Fengfeng GAO, Huifeng CHENG, Bo YANG, Xiaogang HAO. Electrically driven NiFeMn LDH/CNTs/PVDF film electrode for selective extraction of tungstate ions[J]. CIESC Journal, 2025, 76(7): 3350-3360.
高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360.
Add to citation manager EndNote|Ris|BibTeX
Fig.8 (a) W(Ⅵ) adsorption capacity of NiFeMn LDH film at different initial concentrations; (b) Pseudo-first-order kinetic and (c) pseudo-second-order kinetic curves for different initial W(Ⅵ) concentrations
| Initial concentration/(mg·L-1) | Qexp/(mg·g-1) | Quasi-first-order kinetic | Quasi-second-order kinetic | ||||
|---|---|---|---|---|---|---|---|
| k1/min-1 | Qcal/(mg·g-1) | R2 | k2/(g·mg-1·min-1) | Qcal/(mg·g-1) | R2 | ||
| 100 | 50.22 | 0.00863 | 49.19 | 0.7687 | 0.00115 | 50.46 | 0.9973 |
| 200 | 90.43 | 0.01550 | 90.13 | 0.9683 | 0.00048 | 88.83 | 0.9946 |
| 300 | 112.64 | 0.01651 | 112.26 | 0.9733 | 0.00032 | 110.90 | 0.9917 |
| 400 | 122.10 | 0.00972 | 117.78 | 0.9564 | 0.00030 | 119.20 | 0.9924 |
Table 1 Parameters related to kinetic model simulation of W(Ⅵ) adsorption on NiFeMn LDH films with different initial concentrations
| Initial concentration/(mg·L-1) | Qexp/(mg·g-1) | Quasi-first-order kinetic | Quasi-second-order kinetic | ||||
|---|---|---|---|---|---|---|---|
| k1/min-1 | Qcal/(mg·g-1) | R2 | k2/(g·mg-1·min-1) | Qcal/(mg·g-1) | R2 | ||
| 100 | 50.22 | 0.00863 | 49.19 | 0.7687 | 0.00115 | 50.46 | 0.9973 |
| 200 | 90.43 | 0.01550 | 90.13 | 0.9683 | 0.00048 | 88.83 | 0.9946 |
| 300 | 112.64 | 0.01651 | 112.26 | 0.9733 | 0.00032 | 110.90 | 0.9917 |
| 400 | 122.10 | 0.00972 | 117.78 | 0.9564 | 0.00030 | 119.20 | 0.9924 |
| T/K | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) | R2 |
|---|---|---|---|---|
| 298 | -4.125 | — | — | — |
| 303 | -4.856 | — | — | — |
| 308 | -6.101 | 48.59 | 176.83 | 0.9847 |
| 313 | -6.596 | — | — | — |
| 318 | -7.675 | — | — | — |
Table 2 Thermodynamic calculations of W(Ⅵ) adsorption on NiFeMn LDH film
| T/K | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(J·mol-1·K-1) | R2 |
|---|---|---|---|---|
| 298 | -4.125 | — | — | — |
| 303 | -4.856 | — | — | — |
| 308 | -6.101 | 48.59 | 176.83 | 0.9847 |
| 313 | -6.596 | — | — | — |
| 318 | -7.675 | — | — | — |
| NiFeMn LDH types | Binding energy/eV |
|---|---|
| NiFeMn LDH-WO | -8.55 |
| NiFeMn LDH-SO | -8.53 |
| single layer NiFeMn LDH-WO | -10.06 |
Table 3 The binding energy of NiFeMn LDH with anions
| NiFeMn LDH types | Binding energy/eV |
|---|---|
| NiFeMn LDH-WO | -8.55 |
| NiFeMn LDH-SO | -8.53 |
| single layer NiFeMn LDH-WO | -10.06 |
| Anion types | Separation factor |
|---|---|
| W(Ⅵ) | 1.00 |
| Mo(Ⅵ) | 1.25 |
| Cl- | 19.60 |
| NO | 35.80 |
Table 4 Separation factors of NiFeMn LDH/CNTs/PVDF composite films for different anions
| Anion types | Separation factor |
|---|---|
| W(Ⅵ) | 1.00 |
| Mo(Ⅵ) | 1.25 |
| Cl- | 19.60 |
| NO | 35.80 |
| [1] | 周永敏. 炼油技术开发现状及发展趋势[J]. 石化技术, 2019, 26(12): 120, 115. |
| Zhou Y M. Present situation and development trend of refining technology development[J]. Petrochemical Industry Technology, 2019, 26(12): 120, 115. | |
| [2] | 赵中伟, 孙丰龙, 杨金洪, 等. 我国钨资源、技术和产业发展现状与展望[J]. 中国有色金属学报, 2019, 29(9): 1902-1916. |
| Zhao Z W, Sun F L, Yang J H, et al. Status and prospect for tungsten resources, technologies and industrial development in China[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1902-1916. | |
| [3] | Serdyukov S I, Kniazeva M I, Sizova I A, et al. A new precursor for synthesis of nickel-tungsten sulfide aromatic hydrogenation catalyst[J]. Molecular Catalysis, 2021, 502: 111357. |
| [4] | Haack A, Hillenbrand J, van Gastel M, et al. Spectroscopic and theoretical study on siloxy-based molybdenum and tungsten alkylidyne catalysts for alkyne metathesis[J]. ACS Catalysis, 2021, 11(15): 9086-9101. |
| [5] | Dawood K M, Nomura K. Recent developments in Z-selective olefin metathesis reactions by molybdenum, tungsten, ruthenium, and vanadium catalysts[J]. Advanced Synthesis & Catalysis, 2021, 363(8): 1970-1997. |
| [6] | Bonassi F, Ravelli D, Protti S, et al. Decatungstate photocatalyzed acylations and alkylations in flow via hydrogen atom transfer[J]. Advanced Synthesis & Catalysis, 2015, 357(16/17): 3687-3695. |
| [7] | Yan S Q, Tong T, Li Y, et al. Production of biodiesel through esterification reaction using choline exchanging polytungstoboronic acids as temperature-responsive catalysts[J]. Catalysis Surveys from Asia, 2017, 21(4): 151-159. |
| [8] | Zhao C, Wang C Y, Wang X R, et al. Recovery of tungsten and titanium from spent SCR catalyst by sulfuric acid leaching process[J]. Waste Management, 2023, 155: 338-347. |
| [9] | Wang B, Yang Q W. Optimization of roasting parameters for recovery of vanadium and tungsten from spent SCR catalyst with composite roasting[J]. Processes, 2021, 9(11): 1923. |
| [10] | Moon G, Kim J H, Lee J Y, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium[J]. Hydrometallurgy, 2019, 189: 105132. |
| [11] | 张邦胜, 肖连生, 张启修. 沉淀法分离钨钼的研究进展[J]. 江西有色金属, 2001, 15(2): 26-29. |
| Zhang B S, Xiao L S, Zhang Q X. Progress in W/Mo separation by precipitation[J]. Jiangxi Nonferrous Metals, 2001, 15(2): 26-29. | |
| [12] | 关文娟, 张贵清, 高从堦, 等. 双氧水络合萃取分离钨钼的前驱体料液的制备[J]. 中南大学学报(自然科学版), 2013, 44(5): 1766-1774. |
| Guan W J, Zhang G Q, Gao C J, et al. Preparation of precursor solution for solvent separation of Mo and W by H2O2-complexation[J]. Journal of Central South University (Science and Technology), 2013, 44(5): 1766-1774. | |
| [13] | 袁斌, 邓舜勤. 用离子交换法从钨溶液中分离钼[J]. 湿法冶金, 2003, 22(2): 69-78. |
| Yuan B, Deng S Q. Remove of molybdenum from tungsten solution by ion exchange[J]. Hydrometallurgy of China, 2003, 22(2): 69-78. | |
| [14] | 郭超, 肖连生. 钼酸铵结晶过程中的钨钼分离研究[J]. 稀有金属与硬质合金, 2010, 38(3): 1-4, 15. |
| Guo C, Xiao L S. Study on tungsten and molybdenum separation in the ammonium molybdate crystallization process[J]. Rare Metals and Cemented Carbides, 2010, 38(3): 1-4, 15. | |
| [15] | Zhang W J, Li J T, Zhao Z W, et al. Separation of W and Mo from their peroxoacids solutions by thermal decomposition[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2731-2737. |
| [16] | 王文强, 赵中伟. 钨提取冶金中钨钼分离研究进展——从“削足适履”到“量体裁衣”[J]. 中国钨业, 2015, 30(1): 49-55. |
| Wang W Q, Zhao Z W. Research advances of tungsten-molybdenum separation in tungsten extractive metallurgy[J]. China Tungsten Industry, 2015, 30(1): 49-55. | |
| [17] | 高凤凤, 杨言言, 杜晓, 等. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351. |
| Gao F F, Yang Y Y, Du X, et al. Electrically switched ion membrane for ion selective separation and recovery: from ESIX to ESIPM[J]. Progress in Chemistry, 2020, 32(9): 1344-1351. | |
| [18] | Hu W T, Sun B C, Zhang X F, et al. New insights into the ion/electron transfer mechanisms of LiMn2O4-based membrane electrodes at different electron fluxes[J]. Small, 2025: 2407656. |
| [19] | Zeng G L, Ye D N, Zhang X F, et al. A potential-responsive ion-pump system based on nickel hexacyanoferrate film for selective extraction of cesium ions[J]. Chinese Journal of Chemical Engineering, 2023, 63: 51-62. |
| [20] | Jiang M F, Zhang X F, Du X, et al. An electrochemically induced dual-site adsorption composite film of Ni-MOF derivative/NiCo LDH for selective bromide-ion extraction[J]. Separation and Purification Technology, 2022, 283: 120175. |
| [21] | Hu Y S, Luo Q L, Du X, et al. Film electrode by incorporating polypyrrole/carbon black into cross-linked binders of chitosan/cationic polyacrylamide for selective chloride extraction in wastewater[J]. Separation and Purification Technology, 2024, 330: 125434. |
| [22] | Luo J H, Du X, Gao F F, et al. Electrochemically triggered iodide-vacancy BiOI film for selective extraction of iodide ion from aqueous solutions[J]. Separation and Purification Technology, 2021, 259: 118120. |
| [23] | Song T, Luo Q L, Gao F F, et al. Adsorption and electro-assisted method removal of boron in aqueous solution by nickel hydroxide[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 372-382. |
| [24] | Song Y F, He L H, Chen X Y, et al. Removal of tungsten from molybdate solution by Fe-Mn binary oxide adsorbent[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11): 2492-2502. |
| [25] | Srivastava R R, Kim M S, Lee J C. Separation of tungsten from Mo-rich leach liquor by adsorption onto a typical Fe-Mn cake: kinetics, equilibrium, mechanism, and thermodynamics studies[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17591-17597. |
| [26] | Chai Q, Yang B, Li X M, et al. A self-driven Ni(OH)2/CB/PVDF film for highly efficient adsorption of tungsten via hydroxyl ligand exchange[J]. Separation and Purification Technology, 2025, 352: 128163. |
| [27] | Zhao Z W, Cao C F, Chen X Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2758-2763. |
| [28] | Zhao Y J, Zhang P J, Liang J R, et al. Unlocking layered double hydroxide as a high-performance cathode material for aqueous zinc-ion batteries[J]. Advanced Materials, 2022, 34(37): 2204320. |
| [29] | Lu Z Y, Qian L, Tian Y, et al. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts[J]. Chemical Communications, 2016, 52(5): 908-911. |
| [30] | Ye D N, Gao F F, Zeng G L, et al. An electroactive BiOBr/PVDF/CB film electrode for electrochemical extraction of bromine ions from brines[J]. Industrial & Engineering Chemistry Research, 2023, 62(22): 8882-8892. |
| [31] | Yang B, Chai Q, Li X M, et al. A potential-driven FeMnO x /CNTs film electrode for efficient extraction of WO 4 2 - via electrochemical coordination and inner-sphere complexation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 699: 134686. |
| [1] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [2] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [3] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [4] | Zehai XU, Chao LIU, Guoliang ZHANG. Hydrophobic pervaporation membranes on polymer substrate for solvent recovery [J]. CIESC Journal, 2025, 76(5): 2055-2069. |
| [5] | Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance [J]. CIESC Journal, 2025, 76(5): 2377-2386. |
| [6] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [7] | Chen YANG, Wei MAO, Xingzong DONG, Song TIAN, Fengwei ZHAO, Jian LYU. Research progress in the synthesis of olefins by selective hydrodechlorination [J]. CIESC Journal, 2025, 76(1): 53-70. |
| [8] | Yuhao TANG, Yingying ZHANG, Zhiwei ZHAO, Mengyue LU, Feifei ZHANG, Xiaoqing WANG, Jiangfeng YANG. Ultra-microporous Sc/In-CPM-66A with low-polar pore surfaces for efficient separation of CH4/N2 [J]. CIESC Journal, 2024, 75(9): 3210-3220. |
| [9] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
| [10] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
| [11] | Taohong WANG, Chao WANG, Zheng LI, Ying LIU, Ge TIAN, Ganggang CHANG, Xiaoyu YANG, Zongbi BAO. Immobilize Cu(Ⅰ) into π-complexed MOF adsorbent for selectivity separation of ethane/ethylene [J]. CIESC Journal, 2024, 75(7): 2565-2573. |
| [12] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
| [13] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
| [14] | Xiaorong MENG, Chi SUN, Yiwen LONG. Electro-membrane extraction of Li(Ⅰ) by Cyanex923/TBP/PHEN in collaboration with 2-thiophenecarbonyltrifluoroacetone [J]. CIESC Journal, 2024, 75(12): 4606-4616. |
| [15] | Jiawen LIU, Wencheng XIA, Feng WU, Yaoli PENG, Guangyuan XIE. Mechanism study on mechanochemical solid-phase oxidation recovery of spent LiFePO4 batteries [J]. CIESC Journal, 2024, 75(10): 3775-3782. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||