CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4341-4349.DOI: 10.11949/0438-1157.20250022
• Process safety • Previous Articles
Xiaowen MA1(
), Yangfan CHENG1(
), Shizhou LI2, Ruping LIANG3, Zhong'ao BAO3
Received:2025-01-06
Revised:2025-01-31
Online:2025-09-17
Published:2025-08-25
Contact:
Yangfan CHENG
马晓文1(
), 程扬帆1(
), 李世周2, 梁茹萍3, 鲍忠奥3
通讯作者:
程扬帆
作者简介:马晓文(2001—),女,硕士研究生,402853131@qq.com
基金资助:CLC Number:
Xiaowen MA, Yangfan CHENG, Shizhou LI, Ruping LIANG, Zhong'ao BAO. Effects of particle size on deflagration behaviors and temperature distribution characteristics of TiH2 dust cloud[J]. CIESC Journal, 2025, 76(8): 4341-4349.
马晓文, 程扬帆, 李世周, 梁茹萍, 鲍忠奥. 粒径对TiH2粉尘云燃爆特性及温度分布特征的影响[J]. 化工学报, 2025, 76(8): 4341-4349.
Add to citation manager EndNote|Ris|BibTeX
| KSt /(MPa·m·s-1) | 爆炸危险等级 |
|---|---|
| 0 | St-0:非易爆 |
| 0~20 | St-1:弱到中度爆炸性 |
| 20~30 | St-2:强烈爆炸性 |
| 30以上 | St-3:极强爆炸性 |
Table 1 Explosion hazard levels corresponding to KSt values
| KSt /(MPa·m·s-1) | 爆炸危险等级 |
|---|---|
| 0 | St-0:非易爆 |
| 0~20 | St-1:弱到中度爆炸性 |
| 20~30 | St-2:强烈爆炸性 |
| 30以上 | St-3:极强爆炸性 |
| [1] | He T, Pachfule P, Wu H, et al. Hydrogen carriers[J]. Nature Reviews Materials, 2016, 1(12): 16059. |
| [2] | Kovač A, Paranos M, Marciuš D. Hydrogen in energy transition: a review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035. |
| [3] | Cardoso K R, Roche V, Jorge A M, et al. Hydrogen storage in MgAlTiFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 858: 158357. |
| [4] | Zhang Y, Yang F S, Zhao F Q, et al. Interaction mechanism between metal hydrides and energetic compounds: an extensive literature survey[J]. FirePhysChem, 2022, 2(4): 303-314. |
| [5] | Amiri A, Shahbazian-Yassar R. Recent progress of high-entropy materials for energy storage and conversion[J]. Journal of Materials Chemistry A, 2021, 9(2): 782-823. |
| [6] | Sarajan Z. Preparation of A356 foam aluminum by means of titanium hydride[J]. Metal Science and Heat Treatment, 2017, 59(5): 352-356. |
| [7] | Jiang C L, Zhang J B, Hu R, et al. Energy release characteristics of PTFE/Al/TiH2 reactive jet with different TiH2 content[J]. Defence Technology, 2024, 39: 168-176. |
| [8] | 李丹一, 程扬帆, 李翔, 等. Al/PTFE/TiH2三元活性材料与RDX组合装药的爆炸释能特性[J]. 兵工学报, 2025, 46(1): 37-47. |
| Li D Y, Cheng Y F, Li X, et al. Explosion energy release characteristics of composite charge containing Al/PTFE/TiH2 ternary reactive materials and RDX[J]. Acta Armamentarii, 2025, 46(1): 37-47. | |
| [9] | Wang H, Cheng Y F, Zhu S J, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives[J]. Defence Technology, 2024, 32: 297-308. |
| [10] | Cheng Y F, Meng X R, Feng C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591. |
| [11] | Cheng Y F, Meng X R, Ma H H, et al. Flame propagation behaviors and influential factors of TiH2 dust explosions at a constant pressure[J]. International Journal of Hydrogen Energy, 2018, 43(33): 16355-16363. |
| [12] | Cheng Y F, Song S X, Ma H H, et al. Hybrid H2/Ti dust explosion hazards during the production of metal hydride TiH2 in a closed vessel[J]. International Journal of Hydrogen Energy, 2019, 44(21): 11145-11152. |
| [13] | Yang Y, Luo Z M, Ding X H, et al. Effects of dust concentration, particle size, and crude oil concentration on the explosion characteristics of oil-immersed coal dust[J]. Fuel, 2024, 356: 129596. |
| [14] | Jiang H P, Bi M S, Li B, et al. Combustion behaviors and temperature characteristics in pulverized biomass dust explosions[J]. Renewable Energy, 2018, 122: 45-54. |
| [15] | Chang P J, Mogi T, Dobashi R. An investigation on the dust explosion of micron and nano scale aluminium particles[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. |
| [16] | Zhang J S, Sun L H, Sun T L, et al. Study on explosion risk of aluminum powder under different dispersions[J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104042. |
| [17] | Zhu C C, Jiang H P, Jin S L, et al. Explosion characteristics of AlH3 dust cloud with varying micron particle sizes[J]. International Journal of Hydrogen Energy, 2024, 78: 572-579. |
| [18] | Hu F F, Cheng Y F, Zhang B B, et al. Flame propagation and temperature distribution characteristics of magnesium dust clouds in an open space[J]. Powder Technology, 2022, 404: 117513. |
| [19] | Li S Z, Cheng Y F, Wang R, et al. Suppression effects and mechanisms of three typical solid suppressants on titanium hydride dust explosions[J]. Process Safety and Environmental Protection, 2023, 177: 688-698. |
| [20] | Li Q Z, Lin B Q, Dai H M, et al. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures[J]. Powder Technology, 2012, 229: 222-228. |
| [21] | Castellanos D, Carreto-Vazquez V H, Mashuga C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust[J]. Powder Technology, 2014, 254: 331-337. |
| [22] | Song S X, Cheng Y F, Meng X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection, 2019, 122: 281-287. |
| [23] | Trunov M, Schoenitz M, Dreizin E. Ignition of aluminum powders under different experimental conditions[J]. Propellants, Explosives, Pyrotechnics, 2005, 30(1): 36-43. |
| [24] | Tang F D, Higgins A J, Goroshin S. Effect of discreteness on heterogeneous flames: propagation limits in regular and random particle arrays[J]. Combustion Theory and Modelling, 2009, 13(2): 319-341. |
| [25] | Cheng Y F, Wu H B, Liu R, et al. Combustion behaviors and explosibility of suspended metal hydride TiH2 dust[J]. International Journal of Hydrogen Energy, 2020, 45(21): 12216-12224. |
| [26] | Hanai H, Kobayashi H, Niioka T. A numerical study of pulsating flame propagation in mixtures of gas and particles[J]. Proceedings of the Combustion Institute, 2000, 28(1): 815-822. |
| [27] | Torrado D, Pinilla A, Amin M, et al. Numerical study of the influence of particle reaction and radiative heat transfer on the flame velocity of gas/nanoparticles hybrid mixtures[J]. Process Safety and Environmental Protection, 2018, 118: 211-226. |
| [28] | Fan W P, Gao Y, Zhang Y M, et al. Numerical studies on turbulent flame propagation in premixed gas deflagration inside a tube[J]. Building Simulation, 2020, 13(4): 849-864. |
| [29] | Zhang Q W, Cheng Y F, Zhang B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds[J]. Defence Technology, 2024, 31: 471-483. |
| [30] | Wang Z H, Cheng Y F, Mogi T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876. |
| [1] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [2] | Yuanshen DAI, Zhijiang SHAO, Weifeng CHEN, Ning CHEN. Dynamic prediction method of particle size distribution in ternary precursor crystallization process based on population balance equations [J]. CIESC Journal, 2025, 76(8): 4119-4128. |
| [3] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [4] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [5] | Yunlong HUANG, Jian XU, Tong LIU, Xintong YUAN, Qiang XU. Experimental study on temperature distribution characteristics and flow measurement of horizontal wells in gas reservoir [J]. CIESC Journal, 2025, 76(2): 612-622. |
| [6] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
| [7] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
| [8] | Qianxi XIANG, Xiaokang YANG, Jiaqi SUN, Feng XIE, Zhigang SHAO. Study on distribution characteristics of proton exchange membrane electrolytic cell [J]. CIESC Journal, 2024, 75(11): 4359-4368. |
| [9] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
| [10] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
| [11] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
| [12] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
| [13] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
| [14] | Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix [J]. CIESC Journal, 2022, 73(9): 4217-4225. |
| [15] | Shulei ZHANG, Bingjie LI, Jian JIANG, Xinyu DONG, Lu LIU. Study on evaporation characteristics of sessile droplet on a convex substrate at constant temperature [J]. CIESC Journal, 2022, 73(12): 5537-5546. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||