CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4809-4823.DOI: 10.11949/0438-1157.20241490
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Haimei LUO(
), Hong WANG(
), Zhaoming SUN, Yanhua YIN(
)
Received:2024-12-23
Revised:2025-03-24
Online:2025-10-23
Published:2025-09-25
Contact:
Yanhua YIN
通讯作者:
尹艳华
作者简介:罗海梅(2001—),女,硕士研究生,1950273764@qq.comCLC Number:
Haimei LUO, Hong WANG, Zhaoming SUN, Yanhua YIN. Analysis and verification of calculation model of heat transfer coefficient of twin screw in the same direction[J]. CIESC Journal, 2025, 76(9): 4809-4823.
罗海梅, 王泓, 孙照明, 尹艳华. 同向双螺杆传热系数计算模型的分析与验证[J]. 化工学报, 2025, 76(9): 4809-4823.
Add to citation manager EndNote|Ris|BibTeX
| 药品 | 规格与性质 | 生产厂家 |
|---|---|---|
| 端羟基聚丁二烯(HTPB) | Ⅳ型,羟值0.79 mmol/g | 天元军融化工有限公司 |
| 己二酸二辛酯(DOA) | 纯度98% | 东京化成工业株式会社 |
| 二氧化硅 | 球形,10 | 清河县安迪金属材料有限公司 |
| 无水硫酸钠 | 工业级 | 孝感广盐华源制盐有限公司 |
| 氯化钠 | 分析纯 | 上海麦克林生化科技有限公司 |
| 聚氯乙烯(PVC) | 工业级 | 天津大沽化工股份有限公司 |
Table 1 Experimental raw materials
| 药品 | 规格与性质 | 生产厂家 |
|---|---|---|
| 端羟基聚丁二烯(HTPB) | Ⅳ型,羟值0.79 mmol/g | 天元军融化工有限公司 |
| 己二酸二辛酯(DOA) | 纯度98% | 东京化成工业株式会社 |
| 二氧化硅 | 球形,10 | 清河县安迪金属材料有限公司 |
| 无水硫酸钠 | 工业级 | 孝感广盐华源制盐有限公司 |
| 氯化钠 | 分析纯 | 上海麦克林生化科技有限公司 |
| 聚氯乙烯(PVC) | 工业级 | 天津大沽化工股份有限公司 |
| 序号 | 配比 | 固体组分质量分数/% | 液体组分质量分数/% | |||
|---|---|---|---|---|---|---|
| SiO2+Na2SO4 | NaCl | PVC | HTPB | DOA | ||
| 1 | 7∶1 | 62.36 | 20.79 | 2.35 | 7.00 | 7.50 |
| 2 | 6∶2 | 65.68 | 17.47 | 2.35 | 7.00 | 7.50 |
| 3 | 5∶3 | 68.30 | 14.85 | 2.35 | 7.00 | 7.50 |
| 4 | 4∶4 | 71.27 | 11.88 | 2.35 | 7.00 | 7.50 |
| 5 | 3∶5 | 74.24 | 8.91 | 2.35 | 7.00 | 7.50 |
Table 2 Composiyion of non-aluminum-containing PBX substitutes
| 序号 | 配比 | 固体组分质量分数/% | 液体组分质量分数/% | |||
|---|---|---|---|---|---|---|
| SiO2+Na2SO4 | NaCl | PVC | HTPB | DOA | ||
| 1 | 7∶1 | 62.36 | 20.79 | 2.35 | 7.00 | 7.50 |
| 2 | 6∶2 | 65.68 | 17.47 | 2.35 | 7.00 | 7.50 |
| 3 | 5∶3 | 68.30 | 14.85 | 2.35 | 7.00 | 7.50 |
| 4 | 4∶4 | 71.27 | 11.88 | 2.35 | 7.00 | 7.50 |
| 5 | 3∶5 | 74.24 | 8.91 | 2.35 | 7.00 | 7.50 |
| 仪器名称 | 型号 | 生产厂家 |
|---|---|---|
| 行星式动力混合机 | YH-4XZJB2 | 上海耀环机电设备有限公司 |
| 同向旋转双螺杆挤出机 | PHSJ-20 | 江苏新达科技公司 |
| 旋转流变仪 | HAAKE MARS 40 | 赛默飞世尔科技 |
Table 3 Main experimental equipment and instruments
| 仪器名称 | 型号 | 生产厂家 |
|---|---|---|
| 行星式动力混合机 | YH-4XZJB2 | 上海耀环机电设备有限公司 |
| 同向旋转双螺杆挤出机 | PHSJ-20 | 江苏新达科技公司 |
| 旋转流变仪 | HAAKE MARS 40 | 赛默飞世尔科技 |
| 序号 | 物料配比 | 机筒温度/℃ | 螺杆转速/(r/min) |
|---|---|---|---|
| 1 | 7∶1 | 30 | 100 |
| 2 | 6∶2 | 30 | 100 |
| 3 | 5∶3 | 30 | 100 |
| 4 | 4∶4 | 30 | 100 |
| 5 | 3∶5 | 30 | 100 |
| 6 | 6∶2 | 30 | 60 |
| 7 | 6∶2 | 30 | 70 |
| 8 | 6∶2 | 30 | 80 |
| 9 | 6∶2 | 30 | 90 |
| 10 | 6∶2 | 40 | 100 |
| 11 | 6∶2 | 50 | 100 |
| 12 | 6∶2 | 60 | 100 |
| 13 | 6∶2 | 70 | 100 |
Table 4 Extrusion experiment parameters design
| 序号 | 物料配比 | 机筒温度/℃ | 螺杆转速/(r/min) |
|---|---|---|---|
| 1 | 7∶1 | 30 | 100 |
| 2 | 6∶2 | 30 | 100 |
| 3 | 5∶3 | 30 | 100 |
| 4 | 4∶4 | 30 | 100 |
| 5 | 3∶5 | 30 | 100 |
| 6 | 6∶2 | 30 | 60 |
| 7 | 6∶2 | 30 | 70 |
| 8 | 6∶2 | 30 | 80 |
| 9 | 6∶2 | 30 | 90 |
| 10 | 6∶2 | 40 | 100 |
| 11 | 6∶2 | 50 | 100 |
| 12 | 6∶2 | 60 | 100 |
| 13 | 6∶2 | 70 | 100 |
| 序号 | Tb | 测试结果 | ||||
|---|---|---|---|---|---|---|
| T1/℃ | T2/℃ | T3/℃ | T4/℃ | |||
| 1 | 30 | 32.33 | 31.93 | 31.33 | 31.25 | 30.80 |
| 2 | 30 | 31.97 | 31.47 | 30.93 | 30.71 | 30.23 |
| 3 | 30 | 31.53 | 31.27 | 30.93 | 30.80 | 30.40 |
| 4 | 30 | 32.07 | 31.73 | 31.33 | 31.20 | 30.67 |
| 5 | 30 | 32.23 | 31.87 | 31.43 | 31.25 | 30.63 |
| 6 | 30 | 31.37 | 30.90 | 30.53 | 30.49 | 30.23 |
| 7 | 30 | 31.53 | 31.03 | 30.67 | 30.53 | 30.27 |
| 8 | 30 | 31.73 | 31.20 | 30.77 | 30.61 | 30.50 |
| 9 | 30 | 31.87 | 31.43 | 30.90 | 30.66 | 30.27 |
| 10 | 40 | 41.53 | 41.23 | 40.77 | 40.40 | 40.27 |
| 11 | 50 | 51.30 | 51.07 | 50.83 | 50.65 | 50.47 |
| 12 | 60 | 61.17 | 60.87 | 60.57 | 60.48 | 60.23 |
| 13 | 70 | 71.03 | 70.70 | 70.37 | 70.29 | 70.03 |
Table 5 Experimental test results
| 序号 | Tb | 测试结果 | ||||
|---|---|---|---|---|---|---|
| T1/℃ | T2/℃ | T3/℃ | T4/℃ | |||
| 1 | 30 | 32.33 | 31.93 | 31.33 | 31.25 | 30.80 |
| 2 | 30 | 31.97 | 31.47 | 30.93 | 30.71 | 30.23 |
| 3 | 30 | 31.53 | 31.27 | 30.93 | 30.80 | 30.40 |
| 4 | 30 | 32.07 | 31.73 | 31.33 | 31.20 | 30.67 |
| 5 | 30 | 32.23 | 31.87 | 31.43 | 31.25 | 30.63 |
| 6 | 30 | 31.37 | 30.90 | 30.53 | 30.49 | 30.23 |
| 7 | 30 | 31.53 | 31.03 | 30.67 | 30.53 | 30.27 |
| 8 | 30 | 31.73 | 31.20 | 30.77 | 30.61 | 30.50 |
| 9 | 30 | 31.87 | 31.43 | 30.90 | 30.66 | 30.27 |
| 10 | 40 | 41.53 | 41.23 | 40.77 | 40.40 | 40.27 |
| 11 | 50 | 51.30 | 51.07 | 50.83 | 50.65 | 50.47 |
| 12 | 60 | 61.17 | 60.87 | 60.57 | 60.48 | 60.23 |
| 13 | 70 | 71.03 | 70.70 | 70.37 | 70.29 | 70.03 |
| 实验序号 | 1/ | 实验序号 | 实验序号 | 1/ | |
|---|---|---|---|---|---|
| 1 | 9.90 | 6 | 12.70 | 11 | 10.69 |
| 2 | 11.37 | 7 | 12.12 | 12 | 16.08 |
| 3 | 8.05 | 8 | 10.12 | 13 | 22.96 |
| 4 | 6.91 | 9 | 11.75 | ||
| 5 | 4.76 | 10 | 11.09 |
Table 6 Calculation results of 1/ Br
| 实验序号 | 1/ | 实验序号 | 实验序号 | 1/ | |
|---|---|---|---|---|---|
| 1 | 9.90 | 6 | 12.70 | 11 | 10.69 |
| 2 | 11.37 | 7 | 12.12 | 12 | 16.08 |
| 3 | 8.05 | 8 | 10.12 | 13 | 22.96 |
| 4 | 6.91 | 9 | 11.75 | ||
| 5 | 4.76 | 10 | 11.09 |
| 实验序号 | T4/℃ | 相对误差/% | |||||
|---|---|---|---|---|---|---|---|
| 实验测试 | 理论计算 | 绝对误差 | 实验测试 | 理论计算 | 绝对误差 | ||
| 1 | 31.25 | 31.10 | 0.15 | 1.08 | 1.23 | 0.15 | 13.84 |
| 2 | 30.71 | 30.52 | 0.19 | 1.26 | 1.44 | 0.19 | 14.96 |
| 3 | 30.80 | 30.71 | 0.10 | 0.73 | 0.83 | 0.10 | 12.69 |
| 4 | 31.20 | 31.10 | 0.10 | 0.87 | 0.97 | 0.10 | 12.10 |
| 5 | 31.25 | 31.12 | 0.13 | 0.98 | 1.11 | 0.13 | 12.72 |
| 6 | 30.49 | 30.32 | 0.17 | 0.88 | 1.04 | 0.17 | 18.88 |
| 7 | 30.53 | 30.40 | 0.13 | 1.00 | 1.14 | 0.14 | 13.28 |
| 8 | 30.61 | 30.43 | 0.18 | 1.12 | 1.30 | 0.18 | 15.59 |
| 9 | 30.66 | 30.50 | 0.16 | 1.21 | 1.37 | 0.16 | 13.33 |
| 10 | 40.68 | 40.55 | 0.13 | 0.85 | 0.98 | 0.13 | 15.40 |
| 11 | 50.65 | 50.62 | 0.03 | 0.65 | 0.68 | 0.03 | 4.10 |
| 12 | 60.48 | 60.40 | 0.08 | 0.69 | 0.77 | 0.08 | 11.82 |
| 13 | 70.29 | 70.20 | 0.09 | 0.74 | 0.83 | 0.09 | 11.63 |
Table 7 Error analysis of theoretical calculation and experimental comparison of outlet temperature and temperature rise of 13 groups of experimental materials
| 实验序号 | T4/℃ | 相对误差/% | |||||
|---|---|---|---|---|---|---|---|
| 实验测试 | 理论计算 | 绝对误差 | 实验测试 | 理论计算 | 绝对误差 | ||
| 1 | 31.25 | 31.10 | 0.15 | 1.08 | 1.23 | 0.15 | 13.84 |
| 2 | 30.71 | 30.52 | 0.19 | 1.26 | 1.44 | 0.19 | 14.96 |
| 3 | 30.80 | 30.71 | 0.10 | 0.73 | 0.83 | 0.10 | 12.69 |
| 4 | 31.20 | 31.10 | 0.10 | 0.87 | 0.97 | 0.10 | 12.10 |
| 5 | 31.25 | 31.12 | 0.13 | 0.98 | 1.11 | 0.13 | 12.72 |
| 6 | 30.49 | 30.32 | 0.17 | 0.88 | 1.04 | 0.17 | 18.88 |
| 7 | 30.53 | 30.40 | 0.13 | 1.00 | 1.14 | 0.14 | 13.28 |
| 8 | 30.61 | 30.43 | 0.18 | 1.12 | 1.30 | 0.18 | 15.59 |
| 9 | 30.66 | 30.50 | 0.16 | 1.21 | 1.37 | 0.16 | 13.33 |
| 10 | 40.68 | 40.55 | 0.13 | 0.85 | 0.98 | 0.13 | 15.40 |
| 11 | 50.65 | 50.62 | 0.03 | 0.65 | 0.68 | 0.03 | 4.10 |
| 12 | 60.48 | 60.40 | 0.08 | 0.69 | 0.77 | 0.08 | 11.82 |
| 13 | 70.29 | 70.20 | 0.09 | 0.74 | 0.83 | 0.09 | 11.63 |
| 水平 | 因素 | |||
|---|---|---|---|---|
| c/(J/(g | ||||
| 水平1 | 1.8660 | 1.0243 | 0.8510 | 17.0899 |
| 水平2 | 1.9280 | 0.9813 | 0.8823 | 23.5260 |
| 水平3 | 1.8760 | 1.4087 | 0.8077 | 18.8830 |
Table 8 Factor level table of different physical property parameter settings under variable ratios
| 水平 | 因素 | |||
|---|---|---|---|---|
| c/(J/(g | ||||
| 水平1 | 1.8660 | 1.0243 | 0.8510 | 17.0899 |
| 水平2 | 1.9280 | 0.9813 | 0.8823 | 23.5260 |
| 水平3 | 1.8760 | 1.4087 | 0.8077 | 18.8830 |
| 实验 | 因素 | (W/(m2 | (W/(m2 | ||||
|---|---|---|---|---|---|---|---|
| 实验1 | 1 | 1 | 1 | 1 | 550.829 | 388.336 | |
| 实验2 | 1 | 2 | 2 | 2 | 556.228 | 392.142 | |
| 实验3 | 1 | 3 | 3 | 3 | 591.584 | 417.067 | |
| 实验4 | 2 | 1 | 2 | 3 | 570.418 | 402.146 | |
| 实验5 | 2 | 1 | 2 | 3 | 530.163 | 373.707 | |
| 实验6 | 2 | 3 | 1 | 2 | 619.269 | 436.586 | |
| 实验7 | 3 | 1 | 3 | 2 | 532.917 | 375.707 | |
| 实验8 | 3 | 2 | 1 | 3 | 543.979 | 383.506 | |
| 实验9 | 3 | 3 | 2 | 1 | 628.587 | 443.155 | |
| 566.213 | 551.390 | 571.360 | 569.860 | ||||
| 573.283 | 543.457 | 585.080 | 569.473 | ||||
| 568.497 | 613.147 | 551.553 | 568.660 | ||||
| 7.070 | 69.690 | 33.527 | 1.200 | ||||
| 主次顺序 | |||||||
| 399.182 | 388.730 | 402.809 | 401.752 | ||||
| 404.166 | 383.138 | 412.481 | 401.478 | ||||
| 400.789 | 432.269 | 388.847 | 400.906 | ||||
| 4.984 | 49.131 | 23.634 | 0.846 | ||||
| 主次顺序 | |||||||
Table 9 Intuitive analysis table of the influence of different physical property parameters on the heat transfer coefficient between the barrel/screw and the material under variable ratios
| 实验 | 因素 | (W/(m2 | (W/(m2 | ||||
|---|---|---|---|---|---|---|---|
| 实验1 | 1 | 1 | 1 | 1 | 550.829 | 388.336 | |
| 实验2 | 1 | 2 | 2 | 2 | 556.228 | 392.142 | |
| 实验3 | 1 | 3 | 3 | 3 | 591.584 | 417.067 | |
| 实验4 | 2 | 1 | 2 | 3 | 570.418 | 402.146 | |
| 实验5 | 2 | 1 | 2 | 3 | 530.163 | 373.707 | |
| 实验6 | 2 | 3 | 1 | 2 | 619.269 | 436.586 | |
| 实验7 | 3 | 1 | 3 | 2 | 532.917 | 375.707 | |
| 实验8 | 3 | 2 | 1 | 3 | 543.979 | 383.506 | |
| 实验9 | 3 | 3 | 2 | 1 | 628.587 | 443.155 | |
| 566.213 | 551.390 | 571.360 | 569.860 | ||||
| 573.283 | 543.457 | 585.080 | 569.473 | ||||
| 568.497 | 613.147 | 551.553 | 568.660 | ||||
| 7.070 | 69.690 | 33.527 | 1.200 | ||||
| 主次顺序 | |||||||
| 399.182 | 388.730 | 402.809 | 401.752 | ||||
| 404.166 | 383.138 | 412.481 | 401.478 | ||||
| 400.789 | 432.269 | 388.847 | 400.906 | ||||
| 4.984 | 49.131 | 23.634 | 0.846 | ||||
| 主次顺序 | |||||||
| 因素 | 偏差平方和 | 自由度 | 显著性 | ||||
|---|---|---|---|---|---|---|---|
| 78.111 | 2 | 35.172 | 19.000 | 99.000 | * | ||
| 8733.520 | 2 | 3945.501 | 19.000 | 99.000 | ** | ||
| 1704.580 | 2 | 770.238 | 19.000 | 99.000 | ** | ||
| 2.247 | 2 | 1.000 | 19.000 | 99.000 | |||
| 误差 | 2.247 | 2 | |||||
| 38.508 | 2 | 35.955 | 19.000 | 99.000 | * | ||
| 4342.701 | 2 | 4054.810 | 19.000 | 99.000 | ** | ||
| 848.447 | 2 | 792.210 | 19.000 | 99.000 | ** | ||
| 1.071 | 2 | 1.000 | 19.000 | 99.000 | |||
| 误差 | 1.071 | 2 | |||||
Table 10 Analysis of variance table for the influence of different physical property parameters on the heat transfer coefficient between the barrel/screw and the material under variable ratios
| 因素 | 偏差平方和 | 自由度 | 显著性 | ||||
|---|---|---|---|---|---|---|---|
| 78.111 | 2 | 35.172 | 19.000 | 99.000 | * | ||
| 8733.520 | 2 | 3945.501 | 19.000 | 99.000 | ** | ||
| 1704.580 | 2 | 770.238 | 19.000 | 99.000 | ** | ||
| 2.247 | 2 | 1.000 | 19.000 | 99.000 | |||
| 误差 | 2.247 | 2 | |||||
| 38.508 | 2 | 35.955 | 19.000 | 99.000 | * | ||
| 4342.701 | 2 | 4054.810 | 19.000 | 99.000 | ** | ||
| 848.447 | 2 | 792.210 | 19.000 | 99.000 | ** | ||
| 1.071 | 2 | 1.000 | 19.000 | 99.000 | |||
| 误差 | 1.071 | 2 | |||||
| 水平 | 因素 | ||
|---|---|---|---|
| 水平1 | 60 | 10 | 30 |
| 水平2 | 100 | 16 | 70 |
Table 11 Factor level table for different operational parameter settings
| 水平 | 因素 | ||
|---|---|---|---|
| 水平1 | 60 | 10 | 30 |
| 水平2 | 100 | 16 | 70 |
| 实验 | 因素 | (W/(m2 | (W/(m2 | |||
|---|---|---|---|---|---|---|
| 实验1 | 1 | 1 | 1 | 480.307 | 338.277 | |
| 实验2 | 1 | 2 | 2 | 466.453 | 323.294 | |
| 实验3 | 2 | 1 | 2 | 578.029 | 411.069 | |
| 实验4 | 2 | 2 | 1 | 571.444 | 402.869 | |
| 473.380 | 529.168 | 525.875 | ||||
| 574.736 | 518.948 | 522.241 | ||||
| 101.356 | 10.220 | 3.634 | ||||
| 主次顺序 | ||||||
| 330.785 | 374.673 | 370.573 | ||||
| 406.969 | 363.082 | 367.182 | ||||
| 76.184 | 11.591 | 3.391 | ||||
| 主次顺序 | ||||||
Table 12 Intuitive analysis table of heat transfer coefficients between barrel/screw and materials under different operational parameters
| 实验 | 因素 | (W/(m2 | (W/(m2 | |||
|---|---|---|---|---|---|---|
| 实验1 | 1 | 1 | 1 | 480.307 | 338.277 | |
| 实验2 | 1 | 2 | 2 | 466.453 | 323.294 | |
| 实验3 | 2 | 1 | 2 | 578.029 | 411.069 | |
| 实验4 | 2 | 2 | 1 | 571.444 | 402.869 | |
| 473.380 | 529.168 | 525.875 | ||||
| 574.736 | 518.948 | 522.241 | ||||
| 101.356 | 10.220 | 3.634 | ||||
| 主次顺序 | ||||||
| 330.785 | 374.673 | 370.573 | ||||
| 406.969 | 363.082 | 367.182 | ||||
| 76.184 | 11.591 | 3.391 | ||||
| 主次顺序 | ||||||
| 因素 | 偏差平方和 | 自由度 | 显著性 | ||||
|---|---|---|---|---|---|---|---|
| 10273.140 | 1 | 777.679 | 161.000 | 405.000 | ** | ||
| 104.438 | 1 | 7.906 | 161.000 | 405.000 | |||
| 13.210 | 1 | 1.000 | 161.000 | 405.000 | |||
| 误差 | 13.210 | 1 | |||||
| 5803.926 | 1 | 504.601 | 161.000 | 405.000 | ** | ||
| 134.363 | 1 | 11.682 | 161.000 | 405.000 | |||
| 11.502 | 1 | 1.000 | 161.000 | 405.000 | |||
| 误差 | 11.502 | 1 | |||||
Table 13 Analysis of variance table for heat transfer coefficients between barrel/screw and materials under different operational parameters
| 因素 | 偏差平方和 | 自由度 | 显著性 | ||||
|---|---|---|---|---|---|---|---|
| 10273.140 | 1 | 777.679 | 161.000 | 405.000 | ** | ||
| 104.438 | 1 | 7.906 | 161.000 | 405.000 | |||
| 13.210 | 1 | 1.000 | 161.000 | 405.000 | |||
| 误差 | 13.210 | 1 | |||||
| 5803.926 | 1 | 504.601 | 161.000 | 405.000 | ** | ||
| 134.363 | 1 | 11.682 | 161.000 | 405.000 | |||
| 11.502 | 1 | 1.000 | 161.000 | 405.000 | |||
| 误差 | 11.502 | 1 | |||||
| [1] | 欧育湘. 炸药学[M]. 北京: 北京理工大学出版社, 2014: 1-2. |
| Ou Y X. Explosives[M]. Beijing: Beijing Institute of Technology Press, 2014: 1-2. | |
| [2] | 何东坡, 温彤, 游国强, 等. 高聚物黏结炸药模压成型的数值模拟研究进展[J]. 兵工自动化, 2024, 43(8): 71-79. |
| He D P, Wen T, You G Q, et al. Research progress in numerical simulation of PBX molding[J]. Ordnance Industry Automation, 2024, 43(8): 71-79. | |
| [3] | Yan F Y H, Zhu P, Zhao S F, et al. Microfluidic strategy for coating and modification of polymer-bonded nano-HNS explosives[J]. Chemical Engineering Journal, 2022, 428: 131096. |
| [4] | 孙华, 郭志军. PBX炸药技术特性及在水中兵器上的应用[J]. 装备指挥技术学院学报, 2009, 20(3): 108-111. |
| Sun H, Guo Z J. Characteristics of PBX dynamite and its application in undersea weaponry[J]. Journal of the Academy of Equipment Command & Technology, 2009, 20(3): 108-111 | |
| [5] | Dombe G, Mehilal, Bhongale C, et al. Application of twin screw extrusion for continuous processing of energetic materials[J]. Central European Journal of Energetic Materials, 2015, 12(3): 507-522. |
| [6] | 张峰峰. 浇注PBX炸药物料混合及固化工艺数值模拟与安全评估[D]. 太原: 中北大学, 2020. |
| Zhang F F. Numerical simulation and safety evaluation of mixing and curing process of PBX explosive[D]. Taiyuan: North University of China, 2020. | |
| [7] | 韩民园, 张振伟, 李瑞勤, 等. 浅析双螺杆挤出工艺在火炸药研制中的安全问题[J]. 化学推进剂与高分子材料, 2020, 18(3): 31-35. |
| Han M Y, Zhang Z W, Li R Q, et al. Security problems of twin screw extrusion process in preparation of propellants and explosives[J]. Chemical Propellants & Polymeric Materials, 2020, 18(3): 31-35. | |
| [8] | 雷宁, 闫大庆. 国外复合固体推进剂连续混合装药工艺的研发及应用前景[J]. 飞航导弹, 2015(9): 90-94. |
| Lei N, Yan D Q. Development and application prospect of continuous mixed charging technology of composite solid propellant abroad[J]. Aerodynamic Missile Journal, 2015(9): 90-94. | |
| [9] | 何吉宇. 双螺杆挤压工艺中影响推进剂药料混合优度的因素[J]. 火炸药学报, 2003, 26(1): 40-42. |
| He J Y. Factors on the goodness of mixing for propellant slurry during the processing of twin-screw extruding[J]. Chinese Journal of Explosives & Propellants, 2003, 26(1): 40-42. | |
| [10] | 王天鹏. 同向双螺杆挤出机挤压系统的设计与性能研究[D]. 青岛: 青岛科技大学, 2018. |
| Wang T P. Design and performance study of extrusion system of co-rotating twin-screw extruder[D]. Qingdao: Qingdao University of Science & Technology, 2018. | |
| [11] | Stritzinger U, Roland W, Berger G, et al. Modeling melt conveying and power consumption of co-rotating twin-screw extruder kneading blocks (Part B): Prediction models[J]. Polymer Engineering & Science, 2023, 63(3): 841-862. |
| [12] | Davenas A. History of the development of solid rocket propellant in France[J]. Journal of Propulsion and Power, 1995, 11(2): 285-291. |
| [13] | Guery J F, Chang I S, Shimada T, et al. Solid propulsion for space applications: an updated roadmap[J]. Acta Astronautica, 2010, 66(1/2): 201-219. |
| [14] | Yacu W A. Modeling a twin screw co-rotating extruder1[J]. Journal of Food Process Engineering, 1985, 8(1): 1-21. |
| [15] | Szydlowski W, Brzoskowski R, White J L. Modelling flow in an intermeshing co-rotating twin screw extruder: flow in kneading discs[J]. International Polymer Processing, 1987, 1(4): 207-214. |
| [16] | Murphy C, Brough J, Muscato R S. Co-extrusion of energetic materials using multiple twin screw extruders: US7063810[P]. 2006-06-20. |
| [17] | Ozkan S, Gevgilili H, Kalyon D M, et al. Twin-screw extrusion of nano-alumina-based simulants of energetic formulations involving gel-based binders[J]. Journal of Energetic Materials, 2007, 25(3): 173-201. |
| [18] | Manning T G, Leone J, Zebregs M, et al. Definition of a JA-2 equivalent propellant to be produced by continuous solventless extrusion[J]. Journal of Applied Mechanics, 2013, 80(3): 031405. |
| [19] | 马秀清, 金律, 张亚军, 等. 含能材料连续挤出技术的应用现状及发展[J]. 塑料, 2018, 47(5): 8-11. |
| Ma X Q, Jin L, Zhang Y J, et al. Application status and development of continuous extrusion technology for energetic materials[J]. Plastics, 2018, 47(5): 8-11. | |
| [20] | 岳梦岩, 张军, 李明娟, 等. 锥形双螺杆加工含能材料熔融过程数值模拟[J]. 塑料, 2024, 53(1): 163-171. |
| Yue M Y, Zhang J, Li M J, et al. Numerical simulation of melting process of energetic materials in conical twin-screw processing[J]. Plastics, 2024, 53(1): 163-171. | |
| [21] | 常义. 含能材料模拟料可视化双螺杆挤出及塑化质量的研究[D]. 北京: 北京化工大学, 2022. |
| Chang Y. Study on visual twin-screw extrusion and plasticizing quality of energetic material simulation material[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| [22] | 卢栓仓, 李萌, 张亮, 等. 含能材料双螺杆工艺研究进展[J]. 化学推进剂与高分子材料, 2013, 11(3): 30-38. |
| Lu S C, Li M, Zhang L, et al. Research progress in twin-screw technology of energetic materials[J]. Chemical Propellants & Polymeric Materials, 2013, 11(3): 30-38. | |
| [23] | 岳梦岩, 薛平, 宋秀铎, 等. 螺杆挤出技术加工火炸药的研究进展[J]. 中国塑料, 2015, 29(12): 1-7. |
| Yue M Y, Xue P, Song X D, et al. Research progress in processing propellant and explosive by screw extrusion technology[J]. China Plastics, 2015, 29(12): 1-7. | |
| [24] | 李怀, 邵慰. 三轮驱动的中国装备制造业——人才战略,自主创新与竞争力提升策略[J]. 产业组织评论, 2015, 7(1): 87-114. |
| Li H, Shao W. Triple-driven China's equipment manufacturing industry: talent strategy, independent innovation and competitiveness enhancement strategies[J]. Industrial Organization Review, 2015, 7(1): 87-114. | |
| [25] | White J L, Kim E K, Keum J M, et al. Modeling heat transfer in screw extrusion with special application to modular self-wiping co-rotating twin-screw extrusion[J]. Polymer Engineering & Science, 2001, 41(8): 1448-1455. |
| [26] | Gregory A C, Mark A S. Analyzing and Troubleshooting Single-screw Extruders[M]. Munich: Carl Hanser, 2013: 247-267. |
| [27] | Tadmor Z, Klein I M. Engineering Principles of Plasticating Extrusion[M]. New York: Van Nostrand Reinhold Company, 1970: 112-115. |
| [28] | Vlachopoulos J, Strutt D. Basic heat transfer and some applications in polymer processing[J]. Plastics Technician's Toolbox, 2002, 2: 21-33. |
| [29] | 韩民园, 朱开金, 陈亚丽. 改性双基推进剂代用料的研制[J]. 固体火箭技术, 2011, 34(4): 478-481, 487. |
| Han M Y, Zhu K J, Chen Y L. Development of substitute materials for modified double-base propellant[J]. Journal of Solid Rocket Technology, 2011, 34(4): 478-481, 487. | |
| [30] | Keum J. Engineering analysis of devolatilization and reactive processing in intermeshing co-rotating twin screw extruders[D]. Akron: The University of Akron, 2004. |
| [31] | Booy M L. Isothermal flow of viscous liquids in corotating twin screw devices[J]. Polymer Engineering & Science, 1980, 20(18): 1220-1228. |
| [32] | 赵玉芬, 田歌, 王艺臻, 等. UHMWPE防弹复合材料正交试验设计与分析[J]. 振动与冲击, 2023, 42(8): 104-110. |
| Zhao Y F, Tian G, Wang Y Z, et al. Orthogonal experimental design and analysis of UHMWPE bulletproof composite[J]. Journal of Vibration and Shock, 2023, 42(8): 104-110. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||