CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 326-335.DOI: 10.11949/0438-1157.20241378
• Energy and environmental engineering • Previous Articles
Congqi HUANG(
), Shuangquan SHAO(
)
Received:2024-12-02
Revised:2024-12-13
Online:2025-06-26
Published:2025-06-25
Contact:
Shuangquan SHAO
通讯作者:
邵双全
作者简介:黄琮琪(1999—),男,硕士研究生,948146937@qq.com
基金资助:CLC Number:
Congqi HUANG, Shuangquan SHAO. Research on characteristics of compression-absorption refrigeration system driven by waste heat in liquid-cooled data center[J]. CIESC Journal, 2025, 76(S1): 326-335.
黄琮琪, 邵双全. 液冷数据中心余热驱动的压缩-吸收式制冷系统特性研究[J]. 化工学报, 2025, 76(S1): 326-335.
Add to citation manager EndNote|Ris|BibTeX
| 部件 | 能量守恒关系式 |
|---|---|
| 蒸发器 | |
| 吸收器 | |
| 溶液换热器 | |
| 发生器 | |
| 压缩机 | |
| 冷凝器 | |
| 回热器 | |
| 溶液泵 | |
| 节流阀 |
Table 1 Energy conservation of system components
| 部件 | 能量守恒关系式 |
|---|---|
| 蒸发器 | |
| 吸收器 | |
| 溶液换热器 | |
| 发生器 | |
| 压缩机 | |
| 冷凝器 | |
| 回热器 | |
| 溶液泵 | |
| 节流阀 |
| 工质 | 工况参数 | 状态点 | 设计值 |
|---|---|---|---|
| 冷却液 | 输入温度/℃ | tH1 | 60.00 |
| 输出温度/℃ | tH2 | 56.00 | |
| 空调冷水 | 输入温度/℃ | tF1 | 18.00 |
| 输出温度/℃ | tF2 | 12.00 | |
| 溶液 | 发生器温度/℃ | t7 | 53.00 |
| 吸收器温度/℃ | t4 | 32.00 | |
| 溶液换热器效率 | ηexc | 0.80 | |
| 制冷剂 | 蒸发温度/℃ | t1 | 10.00 |
| 冷凝温度/℃ | t3 | 32.00 | |
| 压缩机压缩比 | CR | 1.60 | |
| 压缩机等熵效率 | ηi | 0.70 | |
| 压缩机电效率 | ηe | 0.38 | |
| 冷却水 | 输入温度/℃ | tC1 | 24.00 |
| 吸收器温差/℃ | tabs,C2 - tC1 | 5.00 | |
| 冷凝器温差/℃ | tcon,C2 - tC1 | 5.00 |
Table 2 Parameters in rated operating condition
| 工质 | 工况参数 | 状态点 | 设计值 |
|---|---|---|---|
| 冷却液 | 输入温度/℃ | tH1 | 60.00 |
| 输出温度/℃ | tH2 | 56.00 | |
| 空调冷水 | 输入温度/℃ | tF1 | 18.00 |
| 输出温度/℃ | tF2 | 12.00 | |
| 溶液 | 发生器温度/℃ | t7 | 53.00 |
| 吸收器温度/℃ | t4 | 32.00 | |
| 溶液换热器效率 | ηexc | 0.80 | |
| 制冷剂 | 蒸发温度/℃ | t1 | 10.00 |
| 冷凝温度/℃ | t3 | 32.00 | |
| 压缩机压缩比 | CR | 1.60 | |
| 压缩机等熵效率 | ηi | 0.70 | |
| 压缩机电效率 | ηe | 0.38 | |
| 冷却水 | 输入温度/℃ | tC1 | 24.00 |
| 吸收器温差/℃ | tabs,C2 - tC1 | 5.00 | |
| 冷凝器温差/℃ | tcon,C2 - tC1 | 5.00 |
| 1 | 骆清怡, 王长宏. 数据中心多尺度热管理策略综述[J]. 制冷技术, 2021, 41(3): 1-11. |
| Luo Q Y, Wang C H. Review of multi-scale thermal management strategy in data center[J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 1-11. | |
| 2 | Zhou F, Song Y, Ma G Y. Load characteristics analysis of the water source heat pump heating system using data center waste heat[J]. Energy Conversion and Management, 2023, 296: 117679. |
| 3 | Zhang C Q, Luo H X, Wang Z X. An economic analysis of waste heat recovery and utilization in data centers considering environmental benefits[J]. Sustainable Production and Consumption, 2022, 31: 127-138. |
| 4 | 黄一晟, 陈健勇, 罗向龙, 等. 用于余热回收利用的有机朗肯循环与高温热泵对比研究[J]. 制冷技术, 2023, 43(4): 79-85. |
| Huang Y S, Chen J Y, Luo X L, et al. Comparative study on organic Rankine cycle and high temperature heat pump for waste heat recovery and utilization[J]. Chinese Journal of Refrigeration Technology, 2023, 43(4): 79-85. | |
| 5 | Pan Q W, Peng J J, Wang R Z. Application analysis of adsorption refrigeration system for solar and data center waste heat utilization[J]. Energy Conversion and Management, 2021, 228: 113564. |
| 6 | Ebrahimi K, Jones G F, Fleischer A S. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration[J]. Applied Energy, 2015, 139: 384-397. |
| 7 | Chen H, Peng Y H, Wang Y L. Thermodynamic analysis of hybrid cooling system integrated with waste heat reusing and peak load shifting for data center[J]. Energy Conversion and Management, 2019, 183: 427-439. |
| 8 | Wu W. Low-temperature compression-assisted absorption thermal energy storage using ionic liquids[J]. Energy and Built Environment, 2020, 1(2): 139-148. |
| 9 | Takalkar G D, Bhosale R R, Mali N A, et al. Thermodynamic analysis of EMISE-water as a working pair for absorption refrigeration system[J]. Applied Thermal Engineering, 2019, 148: 787-795. |
| 10 | Sujatha I, Venkatarathnam G. Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF 2N] as the absorbent[J]. International Journal of Refrigeration, 2018, 88: 370-382. |
| 11 | Asensio-Delgado J M, Asensio-Delgado S, Zarca G, et al. Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs[J]. International Journal of Refrigeration, 2022, 134: 232-241. |
| 12 | 徐敬玉. 基于烟气处理一体化的开式吸收热泵技术及应用研究[J]. 制冷技术, 2022, 42(3): 62-67. |
| Xu J Y. Research on open absorption heat pump technology and application based on collaborative treatment of flue gas[J]. Chinese Journal of Refrigeration Technology, 2022, 42(3): 62-67. | |
| 13 | 匡胜严, 侯俊杰, 谢吉平, 等. 太阳能溴化锂吸收式热泵应用分析[J]. 制冷技术, 2017, 37(6): 72-77. |
| Kuang S Y, Hou J J, Xie J P, et al. Application analysis of solar LiBr absorption heat pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 72-77. | |
| 14 | Ji Q, Han Z W, Zhang X P, et al. Study on the heating performance of absorption-compression hybrid heat pump in severe cold regions[J]. Applied Thermal Engineering, 2021, 185: 116419. |
| 15 | Wang J, Wang B L, Li X T, et al. Performance analysis on compression-assisted absorption heat transformer: a new low-temperature heating system with higher heating capacity under lower ambient temperature[J]. Applied Thermal Engineering, 2018, 134: 419-427. |
| 16 | Ji Q, Yin Y G, Wang Y K, et al. Comparative analysis of compression-absorption cascade heat pump using various ionic liquid-based working pairs[J]. Energy Conversion and Management, 2022, 269: 116084. |
| 17 | Guo Y H, Shao S Q, Geng X D, et al. A data-driven evaluating method on the defrosting effect of the air source heat pump system in Beijing[J]. Applied Thermal Engineering, 2023, 235: 121377. |
| 18 | Huicochea A. A novel advanced absorption heat pump (type Ⅲ) for cooling and heating using low-grade waste heat[J]. Energy, 2023, 278: 127938. |
| 19 | Wu W, Leung M, Ding Z X, et al. Comparative analysis of conventional and low-GWP refrigerants with ionic liquid used for compression-assisted absorption cooling cycles[J]. Applied Thermal Engineering, 2020, 172: 115145. |
| 20 | Gupta R, Puri I K. Waste heat recovery in a data center with an adsorption chiller: technical and economic analysis[J]. Energy Conversion and Management, 2021, 245: 114576. |
| 21 | Kansal A, Zhao F, Liu J, et al. Virtual Machine Power Metering and Provisioning[C]//Proceedings of the 1st ACM Symposium on Cloud computing. ACM, 2010. |
| 22 | Huang P, Copertaro B, Zhang X X, et al. A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. |
| 23 | Zhang X, Cai L, Chen T, et al. Performance analysis of a novel compression-assisted absorption power and refrigeration system with selected 1,1-difluoroethane/ionic liquid[J]. Journal of Cleaner Production, 2022, 340: 130856. |
| 24 | Zhang X, Wang R Z, Xu Z Y. Air-source hybrid absorption-compression heat pumps with three-stage thermal coupling configuration for temperature lift over 150℃[J]. Energy Conversion and Management, 2022, 271: 116304. |
| 25 | Ji Q, Wang Y K, Yin Y G, et al. Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair[J]. Energy, 2023, 278: 128018. |
| 26 | Dai B M, Yang H N, Liu S C, et al. Hybrid solar energy and waste heat driving absorption subcooling supermarket CO2 refrigeration system: energetic, carbon emission and economic evaluation in China[J]. Solar Energy, 2022, 247: 123-145. |
| 27 | Wahlroos M, Pärssinen M, Rinne S, et al. Future views on waste heat utilization—case of data centers in Northern Europe[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1749-1764. |
| 28 | 颜晓光. 冷却塔间接供冷系统在数据中心的应用研究[J]. 制冷与空调(四川), 2022, 36(5): 693-700. |
| Yan X G. Application analysis of indirect cooling system of cooling tower in data center[J]. Refrigeration & Air Conditioning, 2022, 36(5): 693-700. | |
| 29 | 杨毅, 任华华, 郝海仙. 数据中心冷却塔供冷应用分析[J]. 建筑热能通风空调, 2014, 33(1): 80-82. |
| Yang Y, Ren H H, Hao H X. The application analysis of cooling tower free cooling for data center[J]. Building Energy & Environment, 2014, 33(1): 80-82. | |
| 30 | Huang Q H, Shao S Q, Zhang H N, et al. Development and composition of a data center heat recovery system and evaluation of annual operation performance[J]. Energy, 2019, 189: 116200. |
| [1] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [2] | Fang ZHOU, Jian LIU, Xiaosong ZHANG. Selection of ternary zeotropic mixtures for high-temperature heat pumps on multiparameter evaluation principles [J]. CIESC Journal, 2023, 74(11): 4487-4500. |
| [3] | Wei HE, Yongna CAO, Hongru SHANG, Yinxue LI, Chao GUO, Yanling YU. Optimum design and performance analysis of waste heat recovery system for biomass fermentation [J]. CIESC Journal, 2023, 74(10): 4302-4310. |
| [4] | WANG Fei, WANG Jianmin, SHAO Shuangquan. Analysis multi-stage heat transfer process of data center cooling system from the temperature difference [J]. CIESC Journal, 2021, 72(S1): 348-355. |
| [5] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
| [6] | Jianpei CHANG, Xiang HUANG, Miaomiao AN, Zhaoyang LI. Analysis of principle, performance and applicability of indirect evaporative water chiller [J]. CIESC Journal, 2020, 71(S1): 236-244. |
| [7] | Yiqun LI, Chunhuan LUO, Na LI, Qingquan SU. Study on CaCl2-LiCl/H2O as working pair of absorption refrigeration cycle [J]. CIESC Journal, 2019, 70(9): 3483-3494. |
| [8] | Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290. |
| [9] | Yu CAO, Le WANG, Chao JI, Yanzhao HUANG, Zhilei XUE, Jianming LU, Hong QI. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers [J]. CIESC Journal, 2019, 70(6): 2192-2201. |
| [10] | SUN Yanjun, DI Gaolei, XIA Juan, WANG Xiaopo, JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44. |
| [11] | WANG Luyao, WU Bin, DU Zhimin, JIN Xinqiao. Sensor fault detection and diagnosis for data center air conditioning system based on LSTM neural network [J]. CIESC Journal, 2018, 69(S2): 252-259. |
| [12] | MENG Qingying, CAO Yu, HUANG Yanzhao, WANG Le, LI Li, NIU Shufeng, QI Hong. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes [J]. CIESC Journal, 2018, 69(6): 2519-2525. |
| [13] | DU Wenjing, SUN Huimin, CHENG Lin. Experimental research and numerical analysis of heat collector performance for waste heat recovery [J]. CIESC Journal, 2018, 69(5): 1946-1955. |
| [14] | TIAN Hua, JING Dongzhan, WANG Xuan, LIU Peng, YU Zhigang. Part-load performance analysis of cogeneration system for engine waste heat recovery [J]. CIESC Journal, 2018, 69(2): 792-800. |
| [15] | CHAI Junlin, TIAN Rui, YANG Fubin, ZHANG Hongguang. Thermo-economic comparative analysis of different organic Rankine cycle system schemes for vehicle diesel engine waste heat recovery [J]. CIESC Journal, 2017, 68(8): 3258-3265. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||