CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 318-325.DOI: 10.11949/0438-1157.20241386
• Energy and environmental engineering • Previous Articles
Aihua MA(
), Shuai ZHAO, Lin WANG(
), Minghui CHANG
Received:2024-12-02
Revised:2024-12-17
Online:2025-06-26
Published:2025-06-25
Contact:
Lin WANG
通讯作者:
王林
作者简介:马爱华(1973—),女,硕士,副教授,lymah73@126.com
基金资助:CLC Number:
Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles[J]. CIESC Journal, 2025, 76(S1): 318-325.
马爱华, 赵帅, 王林, 常明慧. 太阳能吸收制冷循环动态特性仿真方法研究[J]. 化工学报, 2025, 76(S1): 318-325.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 工况一 | 工况二 |
|---|---|---|
| 发生器热水进口温度/℃ | 80 | 80 |
| 发生器热水流量/(kg/s) | 0.18 | 0.18 |
| 冷凝器冷却水进口温度/℃ | 30.8 | 32.0 |
| 冷凝器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 蒸发器冷冻水进口温度/℃ | 26.6 | 24.5 |
| 蒸发器冷冻水流量/(kg/s) | 0.26 | 0.14 |
| 吸收器冷却水进口温度/℃ | 30.8 | 32.0 |
| 吸收器冷却水流量/(kg/s) | 0.24 | 0.24 |
Table 1 Input parameters under two operating conditions
| 参数 | 工况一 | 工况二 |
|---|---|---|
| 发生器热水进口温度/℃ | 80 | 80 |
| 发生器热水流量/(kg/s) | 0.18 | 0.18 |
| 冷凝器冷却水进口温度/℃ | 30.8 | 32.0 |
| 冷凝器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 蒸发器冷冻水进口温度/℃ | 26.6 | 24.5 |
| 蒸发器冷冻水流量/(kg/s) | 0.26 | 0.14 |
| 吸收器冷却水进口温度/℃ | 30.8 | 32.0 |
| 吸收器冷却水流量/(kg/s) | 0.24 | 0.24 |
| 工况 | 参数 | 发生器/kW | 冷凝器/kW | 蒸发器/kW | 吸收器/kW | COP(能效比) |
|---|---|---|---|---|---|---|
| 工况一 | 稳态仿真 | 10.25 | 8.89 | 8.52 | 9.93 | 0.83 |
| 动态仿真 | 10.25 | 9.54 | 9.17 | 10.22 | 0.89 | |
| 误差 | 0 | 6.8% | 7.1% | 2.8% | 6.7% | |
| 工况二 | 实验值 | 2.03 | 1.84 | 1.68 | 1.87 | 0.83 |
| 动态仿真 | 2.03 | 1.85 | 1.77 | 1.95 | 0.88 | |
| 误差 | 0 | 0.4% | 5.2% | 4.3% | 5.9% |
Table 2 Model verification results of two operating conditions
| 工况 | 参数 | 发生器/kW | 冷凝器/kW | 蒸发器/kW | 吸收器/kW | COP(能效比) |
|---|---|---|---|---|---|---|
| 工况一 | 稳态仿真 | 10.25 | 8.89 | 8.52 | 9.93 | 0.83 |
| 动态仿真 | 10.25 | 9.54 | 9.17 | 10.22 | 0.89 | |
| 误差 | 0 | 6.8% | 7.1% | 2.8% | 6.7% | |
| 工况二 | 实验值 | 2.03 | 1.84 | 1.68 | 1.87 | 0.83 |
| 动态仿真 | 2.03 | 1.85 | 1.77 | 1.95 | 0.88 | |
| 误差 | 0 | 0.4% | 5.2% | 4.3% | 5.9% |
| 名称 | 参数 | 名称 | 参数 |
|---|---|---|---|
| 发生器热水进口温度/℃ | 80.00 | 吸收器冷却水出口温度/℃ | 33.56 |
| 发生器热水出口温度/℃ | 65.63 | 吸收器吸收温度/℃ | 37.98 |
| 发生器发生温度/℃ | 68.84 | 吸收器换热壳管温度/℃ | 34.84 |
| 发生器换热壳管温度/℃ | 71.86 | 冷剂水流量/(kg/s) | 0.004 |
| 冷凝器冷却水进口温度/℃ | 27.72 | 发生器热水流量/(kg/s) | 0.18 |
| 冷凝器冷却水出口温度/℃ | 33.56 | 冷凝器冷却水流量/(kg/s) | 0.50 |
| 冷凝器冷凝温度/℃ | 34.29 | 蒸发器冷冻水流量/(kg/s) | 0.36 |
| 冷凝器换热壳管温度/℃ | 30.33 | 吸收器冷却水流量/(kg/s) | 0.44 |
| 蒸发器冷冻水进口温度/℃ | 23.01 | 发生器负荷/kW | 10.83 |
| 蒸发器冷冻水出口温度/℃ | 16.83 | 冷凝器负荷/kW | 9.69 |
| 蒸发器蒸发温度/℃ | 16.55 | 蒸发器制冷量/kW | 9.31 |
| 蒸发器换热壳管温度/℃ | 16.92 | 吸收器负荷/kW | 10.75 |
| 吸收器冷却水进口温度/℃ | 27.72 | COP | 0.86 |
Table 3 Initial state parameters of cycle simulation
| 名称 | 参数 | 名称 | 参数 |
|---|---|---|---|
| 发生器热水进口温度/℃ | 80.00 | 吸收器冷却水出口温度/℃ | 33.56 |
| 发生器热水出口温度/℃ | 65.63 | 吸收器吸收温度/℃ | 37.98 |
| 发生器发生温度/℃ | 68.84 | 吸收器换热壳管温度/℃ | 34.84 |
| 发生器换热壳管温度/℃ | 71.86 | 冷剂水流量/(kg/s) | 0.004 |
| 冷凝器冷却水进口温度/℃ | 27.72 | 发生器热水流量/(kg/s) | 0.18 |
| 冷凝器冷却水出口温度/℃ | 33.56 | 冷凝器冷却水流量/(kg/s) | 0.50 |
| 冷凝器冷凝温度/℃ | 34.29 | 蒸发器冷冻水流量/(kg/s) | 0.36 |
| 冷凝器换热壳管温度/℃ | 30.33 | 吸收器冷却水流量/(kg/s) | 0.44 |
| 蒸发器冷冻水进口温度/℃ | 23.01 | 发生器负荷/kW | 10.83 |
| 蒸发器冷冻水出口温度/℃ | 16.83 | 冷凝器负荷/kW | 9.69 |
| 蒸发器蒸发温度/℃ | 16.55 | 蒸发器制冷量/kW | 9.31 |
| 蒸发器换热壳管温度/℃ | 16.92 | 吸收器负荷/kW | 10.75 |
| 吸收器冷却水进口温度/℃ | 27.72 | COP | 0.86 |
| 1 | International Energy Outlook, Energy Information Administration[R]. Washington DC, Department of Energy, 2023. |
| 2 | Renato Lazzarin, 王云鹏, 张晓宁, 等. 太阳能制冷的应用现状[J]. 制冷技术, 2021, 41(2): 1-10. |
| Lazzarin R, Wang Y P, Zhang X N, et al. Application progress of solar cooling[J]. Chinese Journal of Refrigeration Technology, 2021, 41(2): 1-10. | |
| 3 | 匡胜严, 侯俊杰, 谢吉平, 等. 太阳能溴化锂吸收式热泵应用分析[J]. 制冷技术, 2017, 37(6): 72-77. |
| Kuang S Y, Hou J J, Xie J P, et al. Application analysis of solar LiBr absorption heat pump[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 72-77. | |
| 4 | 张云, 陈汝东. 提高蒸发温度对单效溴化锂吸收式制冷的影响分析[J]. 制冷技术, 2010, 30(2): 48-51. |
| Zhang Y, Chen R D. Effect of evaporating temperature on energy efficiency of LiBr absorption refrigeration system[J]. Refrigeration Technology, 2010, 30(2): 48-51. | |
| 5 | Wei H Y, Huang S F, Ma Y X, et al. Experimental investigation on solution regeneration performance and coefficients in full-open system for heat and water recovery of flue gas[J]. Journal of Thermal Science, 2024, 33(3): 1094-1108. |
| 6 | Liang A M, Yang S, Ding Y, et al. Triple effect absorption refrigeration systems for the deep recovery of low grade waste heat[J]. Applied Thermal Engineering, 2024, 250: 123500. |
| 7 | Su W, Han Y H, Liu Z Y, et al. Absorption heat pumps for low-grade heat utilization: a comprehensive review on working pairs, classification, system advances and applications[J]. Energy Conversion and Management, 2024, 315: 118760. |
| 8 | Li Z Y, Huang C, Yin J H. Effect of inter-stage pressure on performances of two-stage transcritical CO2 refrigeration cycle with dedicated absorption dual-subcooling and mechanical recooling[J]. Journal of Thermal Science, 2024, 33(6): 2179-2189. |
| 9 | Zhao T, Xu R H, Xin Y L, et al. A comprehensive study of a low-grade heat-driven cooling and power system based on heat current method[J]. Journal of Thermal Science, 2024, 33(4): 1523-1541. |
| 10 | Zhang H, Chen F P, Liu Y, et al. The performance analysis of a LCPV/T assisted absorption refrigeration system[J]. Renewable Energy, 2019, 143: 1852-1864. |
| 11 | FathiAlmas Y, Ghadamian H, Aminy M, et al. Thermo-economic analysis, energy modeling and reconstructing of components of a single effect solar–absorption lithium bromide chiller for energy performance enhancement[J]. Energy and Buildings, 2023, 285: 112894. |
| 12 | He H, Wang L, Yuan J F, et al. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle[J]. Energy Conversion and Management, 2019, 201: 112153. |
| 13 | Song M Y, Wang L, Yuan J F, et al. Proposal and parametric study of solar absorption/dual compression hybrid refrigeration system for temperature and humidity independent control application[J]. Energy Conversion and Management, 2020, 220: 113107. |
| 14 | Zhang S S, Yu W J, Wang D C, et al. Thermodynamic characteristics of a novel solar single and double effect absorption refrigeration cycle[J]. Energy, 2024, 308: 132674. |
| 15 | Wang Y T, Kong H Z, Zhu H P, et al. Compression-assisted absorption refrigeration cycle employing organic working pairs for ultra-low grade heat recovery[J]. International Journal of Refrigeration, 2024, 165: 485-499. |
| 16 | Liang W X, Han J T, Ge Y, et al. Investigation on combining multi-effect distillation and double-effect absorption refrigeration cycle to recover exhaust heat of SOFC-GT system[J]. Energy Conversion and Management, 2024, 301: 118054. |
| 17 | Kim B, Park J. Dynamic simulation of a single-effect ammonia-water absorption chiller[J]. International Journal of Refrigeration, 2007, 30(3): 535-545. |
| 18 | Kohlenbach P, Ziegler F. A dynamic simulation model for transient absorption chiller performance(part Ⅰ): The model[J]. International Journal of Refrigeration, 2008, 31(2): 217-225. |
| 19 | Kohlenbach P, Ziegler F. A dynamic simulation model for transient absorption chiller performance(part Ⅱ): Numerical results and experimental verification[J]. International Journal of Refrigeration, 2008, 31(2): 226-233. |
| 20 | Ochoa A A V, Dutra J C C, Henríquez J R G, et al. Dynamic study of a single effect absorption chiller using the pair LiBr/H2O[J]. Energy Conversion and Management, 2016, 108: 30-42. |
| 21 | Iranmanesh A, Mehrabian M A. Dynamic simulation of a single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses[J]. Energy and Buildings, 2013, 60: 47-59. |
| 22 | Zhou Y J, Pan L, Han X, et al. Dynamic modeling and thermodynamic analysis of lithium bromide absorption refrigeration system using Modelica[J]. Applied Thermal Engineering, 2023, 225: 120106. |
| 23 | Wang J, Shang S, Li X T, et al. Dynamic performance analysis for an absorption chiller under different working conditions[J]. Applied Sciences, 2017, 7(8): 797. |
| 24 | Ochoa A A V, Dutra J C C, Henríquez J R G, et al. The influence of the overall heat transfer coefficients in the dynamic behavior of a single effect absorption chiller using the pair LiBr/H2O[J]. Energy Conversion and Management, 2017, 136: 270-282. |
| 25 | de la Calle A, Roca L, Bonilla J, et al. Dynamic modeling and simulation of a double-effect absorption heat pump[J]. International Journal of Refrigeration, 2016, 72: 171-191. |
| 26 | Evola G, Le Pierrès N, Boudehenn F, et al. Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller[J]. International Journal of Refrigeration, 2013, 36(3): 1015-1028. |
| 27 | Zinet M, Rulliere R, Haberschill P. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller[J]. Energy Conversion and Management, 2012, 62: 51-63. |
| 28 | Matsushima H, Fujii T, Komatsu T, et al. Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller)[J]. International Journal of Refrigeration, 2010, 33(2): 259-268. |
| 29 | Yao Y, Huang M W, Mo J Q, et al. State-space model for transient behavior of water-to-air surface heat exchanger[J]. International Journal of Heat and Mass Transfer, 2013, 64: 173-192. |
| 30 | Yao Y, Huang M W, Chen J. State-space model for dynamic behavior of vapor compression liquid chiller[J]. International Journal of Refrigeration, 2013, 36(8): 2128-2147. |
| 31 | Xue B Q, Cai W J, Wang X L. State-space modelling for the ejector-based refrigeration system driven by low grade energy[J]. Applied Thermal Engineering, 2015, 75: 430-444. |
| 32 | 曹艺飞. 太阳能单吸收双压缩复合制冷系统仿真研究[D]. 洛阳: 河南科技大学, 2022: 58-59. |
| Cao Y F. Simulation study on solar single-effect absorption dual-source compression hybrid refrigeration system [D]. Luoyang: Henan University of Science and Technology, 2022: 58-59. | |
| 33 | Vaisi A, Talebi S, Esmaeilpour M. Transient behavior simulation of fin-and-tube heat exchangers for the variation of the inlet temperatures of both fluids[J]. International Communications in Heat and Mass Transfer, 2011, 38(7): 951-957. |
| [1] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [2] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [3] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [4] | Ruijie MA, Zixuan HUANG, Xueqian GUAN, Guangjin CHEN, Bei LIU. Efficient ethane and methane separation using ZIF-8/DMPU slurry [J]. CIESC Journal, 2025, 76(5): 2262-2269. |
| [5] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
| [6] | Feng ZHU, Yue ZHAO, Fengxiang MA, Wei LIU. Adsorption properties of modified UIO-66 for SF6/N2 gas mixture and its decomposition products [J]. CIESC Journal, 2025, 76(4): 1604-1616. |
| [7] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
| [8] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
| [9] | Lyusheng ZHANG, Zhihong WANG, Qing LIU, Xuewen LI, Renmin TAN. Research progress in carbon dioxide capture using liquid-liquid phase change absorbents [J]. CIESC Journal, 2025, 76(3): 933-950. |
| [10] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
| [11] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
| [12] | Angran ZHAO, Yongqiang HAN, Zhipeng WANG, Pengfei LI, Yawei XU, Huiling TONG. Experimental study on simultaneous desulfurization and denitrification of red mud at low temperature [J]. CIESC Journal, 2024, 75(S1): 276-282. |
| [13] | Wenbo ZHOU, Jiangwei YIN, Dan ZHANG, Yue YANG, Jiahao YU, Bingchao ZHAO. Experimental study on evaporation of aqueous NaCl solution droplet heating by thermal irradiation [J]. CIESC Journal, 2024, 75(S1): 85-94. |
| [14] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
| [15] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||