[1] |
Lin L, Cunshan Z, Vittayapadung S, et al. Opportunities and challenges for biodiesel fuel [J]. Applied Energy, 2011, 88(4): 1020-1031
|
[2] |
Ma H, Oxley L, Gibson J, et al. A survey of China's renewable energy economy [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 438-445
|
[3] |
Durre P. Biobutanol: an attractive biofuel [J]. Biotechnology Journal, 2007, 2: 1525-1534
|
[4] |
Manish Kumar, Kalyan Gayen. Developments in biobutanol production: new insights [J]. Applied Energy, 2011, 88(6): 1999-2012
|
[5] |
Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production [J]. Current Opinion in Biotechnology, 2011, 22(5): 634-647
|
[6] |
Long Xiaohua(隆小华), Liu Zhaopu(刘兆普), Wang Lin(王琳). Effects of seawater irrigation on yield composition and ion distribution of different varieties of helianthus tuberosus in coastal mudflat of semiarid region [J]. Acta Pedologica Sinica(China)(土壤学报), 2007, 44: 300-306
|
[7] |
Niness K R. Inulin and oligofructose: what are they? [J] The Journal of Nutrition, 1999, 129: 1402-1406
|
[8] |
Kays S, Nottingham S. Biology and Chemistry of Jerusalem Artichoke[M]. London: CRC Press, 2007: 1-20
|
[9] |
Kim B H, Bellows P, Datta R, et al. Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields [J]. Applied and Environmental Microbiology, 1984, 48(4): 764-770
|
[10] |
Peguin S, Goma G, Delorme P, et al. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition [J]. Applied Microbiology and Biotechnology, 1994, 42: 611-616
|
[11] |
Girbal L, Vasconcelos I, Soucaille P. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH [J]. FEMS Microbiology Reviews, 1995, 16: 151-162
|
[12] |
Kim O, Rakesh B, Eugene L I. Redox potential in acetone-butanol fermentations [J]. Applied Biochemistry and Biotechnology, 1988, 18(1): 175-186
|
[13] |
Husson F, Tu V P, Santiago-Gomez M, et al. Effect of redox potential on the growth of Yarrowia lipolytica and the biosynthesis and activity of heterologous hydroperoxide lyase [J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 39(1): 179-183
|
[14] |
De G, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli [J]. Journal of Bacteriology, 1999, 181: 2351-2357
|
[15] |
Riondet C, Cachon R, Waché Y, et al. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli [J]. Journal of Bacteriology, 2000, 182(3): 620-626
|
[16] |
Wang S, Zhang Y, Dong H, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity [J]. Applied Microbiology and Biotechnology, 2011, 77(5): 1674-1680
|
[17] |
Nakayama S, Bando Y, Ohnishi A, et al. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4[J]. Applied Microbiology and Biotechnology, 2008, 78:483-493
|
[18] |
Liu C G, Xue C, Lin Y H, et al. Redox potential control and applications in microaerobic and anaerobic fermentations [J]. Biotechnology Advances, 2013.31:257-265
|
[19] |
Li J A, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes [J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 911-920
|
[20] |
Jiang Min(姜岷), Huang Xiumei(黄秀梅), Li Jian(李建). Effect of redox potential regulation on metabolic flux distribution of succinate production by Actinobacillus succinogenes [J]. CIESC Journal(化工学报),2009, 60(10):2555-2561
|
[21] |
Berovic M, Roselj M, Wondra M. Possibilities of redox potential regulation in submerged citric acid bioprocessing on beet molasses substrate [J]. Food Technology and Biotechnology, 2000, 38(3): 193-201
|
[22] |
Sogomonian D, Akopian K, Trchunian A. pH and oxidation-reduction potential change of environment during growth of lactic acid bacteria: effects of oxidizers and reducers [J]. Applied Biochemistry and Microbiology, 2011, 47(1): 33-38
|
[23] |
Kastner J R, Eiteman M A, Lee S A. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis [J]. Applied Microbiology and Biotechnology, 2003, 63(1): 96-100
|
[24] |
Du C, Yan H, Zhang Y, et al. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumonia [J]. Applied Microbiology and Biotechnology, 2006, 69: 554-563
|
[25] |
Wang Na(王娜), Liu Chenguang(刘晨光), Yuan Wenjie(袁文杰). ORP control on very high gravity ethanol fermentation [J]. CIESC Journal(化工学报), 2012, 63(4): 1168-1174
|
[26] |
Liu C G, Lin Y H, Bai F W. Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation [J]. Journal of Biotechnology, 2011, 153(1): 42-47
|
[27] |
Berovi? M. Scale-up of citric acid fermentation by redox potential control [J]. Biotechnology and Bioengineering, 1999, 64(5): 552-557
|
[28] |
Deng Pan(邓攀), Chen Lijie(陈丽杰), Bai Fengwu(白凤武). Acetone-butanol fermentation from the mixture of fructose and glucose [J]. Chinese Journal of Biotechnology(生物工程学报), 2011, 27(10): 1448-1456
|
[29] |
Ounine K, Petitdemange H, Raval G, et al. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum [J]. Applied and Environmental Microbiology, 1985, 49: 874-878
|
[30] |
Maddox I S, Steiner E, Hirsch S, et al. The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE) fermentation process [J]. Journal of Molecular Microbiology and Biotechnology, 2000, 2(1): 95-100
|