CIESC Journal ›› 2014, Vol. 65 ›› Issue (6): 2225-2231.DOI: 10.3969/j.issn.0438-1157.2014.06.037
Previous Articles Next Articles
ZHANG Xu, WU Youduo, QI Gaoxiang, LIU Chenguang, CHEN Lijie, BAI Fengwu
Received:
2013-09-26
Revised:
2013-11-19
Online:
2014-06-05
Published:
2014-06-05
Supported by:
supported by the National High Technology Research and Development Program of China (2011AA02A208, 2012AA021205) and the National Natural Science Foundation of China (21376044).
张栩, 吴又多, 齐高相, 刘晨光, 陈丽杰, 白凤武
通讯作者:
陈丽杰
作者简介:
张栩(1988- ),女,硕士研究生。
基金资助:
国家高技术研究发展计划项目(2011AA02A208,2012AA021205),国家自然科学基金项目(21376044)。
CLC Number:
ZHANG Xu, WU Youduo, QI Gaoxiang, LIU Chenguang, CHEN Lijie, BAI Fengwu. Batch butanol fermentation using mixed sugars of glucose and fructose with oxidoreduction potential control[J]. CIESC Journal, 2014, 65(6): 2225-2231.
张栩, 吴又多, 齐高相, 刘晨光, 陈丽杰, 白凤武. 氧化还原电位调控混合糖为底物的丁醇发酵[J]. 化工学报, 2014, 65(6): 2225-2231.
[1] | Lin L, Cunshan Z, Vittayapadung S, et al. Opportunities and challenges for biodiesel fuel [J]. Applied Energy, 2011, 88(4): 1020-1031 |
[2] | Ma H, Oxley L, Gibson J, et al. A survey of China's renewable energy economy [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 438-445 |
[3] | Durre P. Biobutanol: an attractive biofuel [J]. Biotechnology Journal, 2007, 2: 1525-1534 |
[4] | Manish Kumar, Kalyan Gayen. Developments in biobutanol production: new insights [J]. Applied Energy, 2011, 88(6): 1999-2012 |
[5] | Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production [J]. Current Opinion in Biotechnology, 2011, 22(5): 634-647 |
[6] | Long Xiaohua(隆小华), Liu Zhaopu(刘兆普), Wang Lin(王琳). Effects of seawater irrigation on yield composition and ion distribution of different varieties of helianthus tuberosus in coastal mudflat of semiarid region [J]. Acta Pedologica Sinica(China)(土壤学报), 2007, 44: 300-306 |
[7] | Niness K R. Inulin and oligofructose: what are they? [J] The Journal of Nutrition, 1999, 129: 1402-1406 |
[8] | Kays S, Nottingham S. Biology and Chemistry of Jerusalem Artichoke[M]. London: CRC Press, 2007: 1-20 |
[9] | Kim B H, Bellows P, Datta R, et al. Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields [J]. Applied and Environmental Microbiology, 1984, 48(4): 764-770 |
[10] | Peguin S, Goma G, Delorme P, et al. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition [J]. Applied Microbiology and Biotechnology, 1994, 42: 611-616 |
[11] | Girbal L, Vasconcelos I, Soucaille P. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH [J]. FEMS Microbiology Reviews, 1995, 16: 151-162 |
[12] | Kim O, Rakesh B, Eugene L I. Redox potential in acetone-butanol fermentations [J]. Applied Biochemistry and Biotechnology, 1988, 18(1): 175-186 |
[13] | Husson F, Tu V P, Santiago-Gomez M, et al. Effect of redox potential on the growth of Yarrowia lipolytica and the biosynthesis and activity of heterologous hydroperoxide lyase [J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 39(1): 179-183 |
[14] | De G, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli [J]. Journal of Bacteriology, 1999, 181: 2351-2357 |
[15] | Riondet C, Cachon R, Waché Y, et al. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli [J]. Journal of Bacteriology, 2000, 182(3): 620-626 |
[16] | Wang S, Zhang Y, Dong H, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity [J]. Applied Microbiology and Biotechnology, 2011, 77(5): 1674-1680 |
[17] | Nakayama S, Bando Y, Ohnishi A, et al. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4[J]. Applied Microbiology and Biotechnology, 2008, 78:483-493 |
[18] | Liu C G, Xue C, Lin Y H, et al. Redox potential control and applications in microaerobic and anaerobic fermentations [J]. Biotechnology Advances, 2013.31:257-265 |
[19] | Li J A, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes [J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 911-920 |
[20] | Jiang Min(姜岷), Huang Xiumei(黄秀梅), Li Jian(李建). Effect of redox potential regulation on metabolic flux distribution of succinate production by Actinobacillus succinogenes [J]. CIESC Journal(化工学报),2009, 60(10):2555-2561 |
[21] | Berovic M, Roselj M, Wondra M. Possibilities of redox potential regulation in submerged citric acid bioprocessing on beet molasses substrate [J]. Food Technology and Biotechnology, 2000, 38(3): 193-201 |
[22] | Sogomonian D, Akopian K, Trchunian A. pH and oxidation-reduction potential change of environment during growth of lactic acid bacteria: effects of oxidizers and reducers [J]. Applied Biochemistry and Microbiology, 2011, 47(1): 33-38 |
[23] | Kastner J R, Eiteman M A, Lee S A. Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis [J]. Applied Microbiology and Biotechnology, 2003, 63(1): 96-100 |
[24] | Du C, Yan H, Zhang Y, et al. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumonia [J]. Applied Microbiology and Biotechnology, 2006, 69: 554-563 |
[25] | Wang Na(王娜), Liu Chenguang(刘晨光), Yuan Wenjie(袁文杰). ORP control on very high gravity ethanol fermentation [J]. CIESC Journal(化工学报), 2012, 63(4): 1168-1174 |
[26] | Liu C G, Lin Y H, Bai F W. Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation [J]. Journal of Biotechnology, 2011, 153(1): 42-47 |
[27] | Berovi? M. Scale-up of citric acid fermentation by redox potential control [J]. Biotechnology and Bioengineering, 1999, 64(5): 552-557 |
[28] | Deng Pan(邓攀), Chen Lijie(陈丽杰), Bai Fengwu(白凤武). Acetone-butanol fermentation from the mixture of fructose and glucose [J]. Chinese Journal of Biotechnology(生物工程学报), 2011, 27(10): 1448-1456 |
[29] | Ounine K, Petitdemange H, Raval G, et al. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum [J]. Applied and Environmental Microbiology, 1985, 49: 874-878 |
[30] | Maddox I S, Steiner E, Hirsch S, et al. The cause of “acid crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE) fermentation process [J]. Journal of Molecular Microbiology and Biotechnology, 2000, 2(1): 95-100 |
[1] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[2] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[3] | Wuyu WANG, Yuzhu SHI, Long YAN, Xinghua ZHANG, Longlong MA, Qi ZHANG. Synthesis of valerate biofuels on supported Co-based bifunctional catalysts [J]. CIESC Journal, 2022, 73(2): 689-698. |
[4] | Junyi LUO, Shiliang WU, Rui XIAO. Study on combustion characteristics of cycloalkanes mixed with aviation kerosene [J]. CIESC Journal, 2022, 73(2): 847-856. |
[5] | Xinye HUANG, Ye ZHANG, Shuyuan ZHANG, Zhen CHEN, Tong QIU. Application of Bayesian optimization method in the production of 1,3-propanediol by Vibrio natriegens [J]. CIESC Journal, 2022, 73(11): 5039-5046. |
[6] | NIU Xiaopo, XU Shuang, LI Xiaoxue, FENG Fuxiang, WANG Qingfa. Hollow Pt/ZSM-5 catalysts for highly selective hydrodeoxygenation of guaiacol to cycloalkanes [J]. CIESC Journal, 2021, 72(5): 2616-2625. |
[7] | Yao ZHANG, Xiaoman QIU, Chengpeng CHEN, Zhuoran YU, Housheng HONG. Recent progress in microbial production of succinic acid [J]. CIESC Journal, 2020, 71(5): 1964-1975. |
[8] | Shan HUANG, Yongze LU, Guangcan ZHU, Yun KONG. Construction and operation of MLMB -MFC coupled with biocathode SND [J]. CIESC Journal, 2020, 71(4): 1772-1780. |
[9] | Xinyi ZHANG,Rui XU,Yuqi WANG,Yu ZHANG,Fei WANG,Xun LI. Purification and characterization of novel thermo-alkaline lipase and its application [J]. CIESC Journal, 2020, 71(11): 5246-5255. |
[10] | Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201. |
[11] | Ze ZHANG, Jun CHENG, Yi QIU, Hao GUO, Weijuan YANG, Jianzhong LIU. Hydrodeoxygenation and hydrocracking to produce jet biofuel catalyzed by mesoporous zeolite desilicated with NaOH treatment [J]. CIESC Journal, 2019, 70(8): 2919-2927. |
[12] | Haiqing GUAN, Hongyu LI, Qian LI, Bingnan LIU, Jihui WANG, Liang WANG. Efficient production of cordycepin during submerged liquid fermentation by Cordyceps militaris coupled with macroporous resin adsorption [J]. CIESC Journal, 2019, 70(7): 2675-2683. |
[13] | Feng LUO, Li LIN, Zhenchen LI, Wenyu LI, Xianlin CHEN, Sha SHA, Tao LUO. Electrochemical reactions and reactors for biomass valorisation [J]. CIESC Journal, 2019, 70(3): 801-816. |
[14] | Zekang LYU, Shenwei LONG, Guanbing LI, Shengli NIU, Chunmei LU, Kuihua HAN, Yongzheng WANG. Density functional theory study on chlorine corrosion of biomass furnace [J]. CIESC Journal, 2019, 70(11): 4370-4376. |
[15] | XIE Min, CHENG Jian, CHEN Gang, ZHANG Lei, REN Xiaohan. Chlorine release during low-temperature pyrolysis of olive residue [J]. CIESC Journal, 2018, 69(8): 3693-3700. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 805
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 937
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||