[1] |
Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38:1213-1214
|
[2] |
Yang Q, Liu D, Zhong C, Li J. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chem. Rev., 2013, 113: 8261-8323
|
[3] |
Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. Metal-organic frameworks prospective industrial applications[J]. J. Mater. Chem., 2006, 16: 626-636
|
[4] |
Czaja U, Trukhan N, Muller U. Industrial applications of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1284-1293
|
[5] |
Schlichte K, Kratzke T, Kaskel S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous Mesoporous Mater., 2004, 73: 81-88
|
[6] |
Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101[J]. Chem. Commun., 2008(35): 4192-4194
|
[7] |
Horike S, Dinca M, Tamaki K, Long J R. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. J. Am. Chem. Soc., 2008, 130(18): 5854-5855
|
[8] |
Li Kunlan(李坤兰), Zhou Ning(周宁), Xi Zuwei(奚祖威). Effects of the solvents and quaternary ammonium ions in heteropolyoxotungstates on reaction-controlled phase-transfer catalysis for cyclohexene epoxidation [J]. Chinese Journal of Catalysis(催化学报), 2002, 23(2):125-126
|
[9] |
Dai Qunhe(戴群和), Sun Jihong(孙继红), Ren Bo(任博), Chen Dong(陈东), Wu Xia(武霞). Effect of solvents on the structure and properties of mesoporous SiO2 supported phosphotungstic acid [J]. Journal of Inorganic Materials (无机材料学报), 2013, 28(5):537-544
|
[10] |
Sanna N, Chillemi G, Grandi A, Castelli S, Desideri A, Barone V. New hints on the pH-driven tautomeric equilibria of the topotecan anticancer drug in aqueous solutions from an integrated spectroscopic and quantum-mechanical approach[J]. J. Am. Chem. Soc., 2005, 127(44): 15429-15436
|
[11] |
Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chem. Rev., 2005, 105(8): 2999-3093
|
[12] |
Chui S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150
|
[13] |
Furukawa H, Kim J, Ockwig N W, O'Keeffe M, Yaghi O M. Control of vertex geometry, structure dimensionality, functionality, and poremetrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedral[J]. J. Am. Chem. Soc., 2008, 130(35): 11650-11661
|
[14] |
Materials Studio[M]. 5.0V. San Diego, CA: Accelrys Inc., 2008
|
[15] |
Benco L, Bucko T, Hafner J, Toulhoat H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption[J]. J. Phys. Chem. B, 2004, 108(36) : 13656-13666
|
[16] |
Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)][J]. J. Am. Chem. Soc., 2007, 129(27): 8402-8403
|
[17] |
Vimont A, Goupil J M, Lavalley J C, Daturi M, Surble S, Serre C, Millange F, Férey G, Audebrand N. Investigation of acid sites in a zeotypic giant pores chromium(Ⅲ) carboxylate [J]. J. Am. Chem. Soc., 2006, 128(10): 3218-3227
|
[18] |
Li B, Guo W, Yuan S, Hu J, Wang J, Jiao H. A theoretical investigation into the thiophene-cracking mechanism over pure Brønsted acidic zeolites[J]. J. Catal., 2008, 253(1): 212-220
|
[19] |
Liu D H, Zhong C L. Characterization of Lewis acid sites in metal-organic frameworks using density functional theory[J]. J. Phys. Chem. Lett., 2010, 1(1): 97-101
|
[20] |
Klamt A, Schrmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. J. Chem. Soc. Perkin Trans., 1993, 2: 799-805
|
[21] |
Imhof P, Fischer S, Krämer R, Smith J C. Density functional theory analysis of dimethylphosphate hydrolysis: effect of solvation and nucleophile variation[J]. J. Mol. Struct. (Theochem.), 2005, 713(1): 1-5
|
[22] |
Todorova T, Delley B. Wetting of paracetamol surfaces studied by DMol3-COSMO calculations[J]. Mol. Simul., 2008, 34(10): 1013- 1017
|
[23] |
Gavrilenko A V, Matos T D, Bonner C E, Sun S S, Zhang C, Gavrilenko V I. Optical absorption of poly(thienylene vinylene)- conjugated polymers: experiment and first principle theory[J]. J. Phys. Chem. C, 2008, 112(21): 7908-7912
|
[24] |
Zhang R G, Ling L X, Wang B J, Huang W. Solvent effects on adsorption of CO over CuCl(111) surface: a density functional theory study[J]. Appl. Surf. Sci., 2010, 256(1): 6717-6722
|
[25] |
Zhang R G, Ling L X, Zhong L, Wang B J. Solvent effects on Cu2O(111) surface properties and CO adsorption on Cu2O(111) surface: a DFT study[J]. Appl. Catal. A: Gen., 2011, 400(1/2): 142-147
|
[26] |
Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs P A, De Vos D. Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5- tricarboxylate) [J]. Chem. Eur. J., 2006, 12(28): 7353-7363
|
[27] |
Sun B Z, Chen W K, Zheng J D, Lu C H. Roles of oxygen vacancy in the adsorption properties of CO and NO on Cu2O(111) surface: results of a first-principles study[J]. Appl. Surf. Sci., 2008, 255(5): 3141-3148
|
[28] |
Shao Juxiang (邵菊香), Cheng Xinlu (程新路), Yang Xiangdong (杨向东), Zhang Fangpei (张芳沛), Ge Suhong (葛素红). Calculations of bond dissociation energies and bond lengths of C—H, C—N, C—O, N—N[J]. J. At. Mol. Phys. (原子与分子物理学报), 2006, 23(1): 80-84
|
[29] |
Zuo Z J, Huang W, Han P D, Li Z H. Solvent effects for CO and H2 adsorption on Cu2O (111) surface: a density functional theory study[J]. Appl. Surf. Sci., 2010, 256(8): 2357-2362
|
[30] |
Andzelm J, Kölmel C, Klamt A. Incorporation of solvent effects into density-functional calculations of molecular energies and geometries[J]. J. Chem. Phys., 1995, 103: 9312-9320
|
[31] |
Rubeš M, Grajciar L, Bludský O, A. Wiersum D, Llewellyn P L, Nachtigall P. Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in Cu-BTC MOF [J]. Chem. Phys . Chem., 2012, 13(2): 488-495
|