[1] |
ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13): 3618-3632.
|
[2] |
SULEIMAN A S, DUKHAN N. Forced convection inside metal foam: simulation over a long domain and analytical validation[J]. International Journal of Thermal Sciences, 2014, 86: 104-114.
|
[3] |
MA X, DING G, ZHAGN Y, et al. Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying conditions[J]. Energy Conversion and Management, 2007, 48(9): 2525-2532.
|
[4] |
MA X, DING G, ZHANG Y, et al. Airside characteristics of heat, mass transfer and pressure drop for heat exchangers of tube-in hydrophilic coating wavy fin under dehumidifying conditions[J]. International Journal of Heat and Mass Transfer, 2009, 52(19): 4358-4370.
|
[5] |
WANG C C, LIAW J S. Air-side performance of herringbone wavy fin-and-tube heat exchangers under dehumidifying condition-data with larger diameter tube[J]. International Journal of Heat and Mass Transfer, 2012, 55(11): 3054-3060.
|
[6] |
WANG C C, LIN Y T, LEE C J. Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions[J]. International Journal of Heat and Mass Transfer, 2000, 43(18): 3443-3452.
|
[7] |
PHAN T L, CHANG K S, KWON Y C, et al. Experimental study on heat and mass transfer characteristics of louvered fin-tube heat exchangers under wet condition[J]. International Communications in Heat and Mass Transfer, 2011, 38(7): 893-899.
|
[8] |
VAHABZADEH A, GANJI D D, ABBASI M. Analytical investigation of porous pin fins with variable section in fully-wet conditions[J]. Case Studies in Thermal Engineering, 2015, 5: 1-12.
|
[9] |
MANCIN S, ZILIO C, CAVALLINI A, et al. Heat transfer during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2010, 53(21): 4976-4984.
|
[10] |
HSIEH W H, WU J Y, SHIH W H, et al. Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks[J]. International Journal of Heat and Mass Transfer, 2004, 47: 5149-5157
|
[11] |
DAI Z, NAWAZ K, PARK Y, et al. A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications[J]. Heat Transfer Engineering, 2012, 33 (1): 21-30
|
[12] |
ZHAO CY, KIM T, LU T J, et al. Thermal transport in high porosity metal foams[J]. Thermophysics Heat Transfer, 2004, 18 (3): 309-317
|
[13] |
BHATTACHARYA A, MAHAJAN R L. Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection[J]. Journal of Electronic Packaging, 2006, 128(3): 259-266.
|
[14] |
HUTTER C, BÜCHI D, ZUBER V, et al. Heat transfer in metal foams and designed porous media.[J]. Chemical Engineering Science, 2011, 66(17): 3806-3814.
|
[15] |
MANCIN S, ZILIO C, DIANI A, et al. Experimental air heat transfer and pressure drop through copper foams[J]. Experimental Thermal and Fluid Science, 2012, 36: 224-232
|
[16] |
BOLLA K K, MURTHY J Y, GARIMELLA S V. Microtomography-based simulation of transport through open-cell metal foams[J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(7): 527-544.
|
[17] |
RANUT P, NOBILE E, MANCINI L. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams[J]. Experimental Thermal and Fluid Science, 2015, 67: 30-36.
|
[18] |
LU T J, STONE H A, ASHBY M F. Heat transfer in open-cell metal foams[J]. Acta Materialia, 1998, 46(10): 3619-3635.
|
[19] |
BOOMSMA K, POULIKAKOS D, VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow, 2003, 24(6): 825-834.
|
[20] |
KOPANIDIS A, THEODORAKAKOS A, GAVAISES E, et al. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2539-2550.
|
[21] |
CONTENTO G, OLIVIERO M, BIANCO N, et al. The prediction of radiation heat transfer in open cell metal foams by a model based on the Lord Kelvin representation[J]. International Journal of Heat and Mass Transfer, 2014, 76: 499-508.
|
[22] |
SAHA A A, MITRA S K. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow[J]. Journal of Colloid and Interface Science, 2009, 339(2): 461-480.
|
[23] |
杨艺菲, 庄大伟, 胡海涛, 等. 湿工况下平翅片平面凝水形成及运动过程的数值模拟与实验验证[J]. 化工学报, 2014, 65(S2): 140-147. DOI: 10.3969/j.issn.0438-1157.2014.z2.021. YANG Y F, ZHUANG D W, HU H T, et al. Numerical simulation and experimental validation of water condensing and moving on plain-fin surface under dehumidifying conditions[J]. CIESC Journal, 2014, 65(S2): 140-147. DOI: 10.3969/j.issn.0438-1157.2014.z2.021.
|
[24] |
MITROVIC J. Phase equilibrium of a liquid droplet formed on a solid particle[J]. Chemical Engineering Science, 2006, 61(18): 5925-5933.
|
[25] |
熊伟, 庄大伟, 胡海涛, 等. 湿工况下翅片管换热器空气侧热质传递动态模拟[J].制冷技术, 2013, 33(1):1-5. DOI: 10.3969/j.issn. 2095-4468.2012.04.101. XIONG W, ZHUANG D W, HU H T, et al. Dynamic simulation of heat and mass transfer characteristics for tube-finned heat exchangers under dehumidifying conditions[J]. Chinese Journal of Refrigeration Technology, 2013, 33(1): 1-5.
|
[26] |
SOMMERS A D, YING J, EID K F. Predicting the onset of condensate droplet departure from a vertical surface due to air flow—applications to topographically-modified, micro-grooved surfaces[J]. Experimental Thermal and Fluid Science, 2012, 40: 38-49.
|
[27] |
ELSHERBINI A I, JACOBI A M. Liquid drops on vertical and inclined surfaces(Ⅰ): An experimental study of drop geometry[J]. Journal of Colloid and Interface Science, 2004, 273(2): 556-565.
|
[28] |
翁晓敏, 胡海涛, 庄大伟, 等. 湿空气在泡沫金属内析湿过程的换热与压降特性影响因素分析[J]. 化工学报, 2015, 66(5):1649-1655. DOI:10.11949/j.issn.0438-1157.20141657. WENG X M, HU H T, ZHUANG D W, et al. Analysis of influence factors for heat transfer and pressure drop characteristics of moist air in metal foams during dehumidifying process[J]. CIESC Journal, 2015, 66(5): 1649-1655 DOI: 10.11949/j.issn.0438-1157.20141657.
|