CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 1-6.DOI: 10.11949/j.issn.0438-1157.20160623
Previous Articles Next Articles
CHEN Sitong1,2, LI Weiwei2, WANG Xueke1,2, WANG Shubo2, XIE Xiaofeng2, ZHU Tong1
Received:
2016-05-09
Revised:
2016-05-19
Online:
2016-08-31
Published:
2016-08-31
Supported by:
supported by the National Natural Science Foundation of China (51573083).
陈思彤1,2, 李微微2, 王学科1,2, 王树博2, 谢晓峰2, 朱彤1
通讯作者:
谢晓峰,朱彤,tongzhu@mail.neu.edu.cn
基金资助:
国家自然科学基金项目(51573083)。
CLC Number:
CHEN Sitong, LI Weiwei, WANG Xueke, WANG Shubo, XIE Xiaofeng, ZHU Tong. Thermal management using phase change materials for proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67(S1): 1-6.
陈思彤, 李微微, 王学科, 王树博, 谢晓峰, 朱彤. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67(S1): 1-6.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160623
[1] | 黄倬,屠海令, 张冀强, 等. 质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社, 2000:5-29. HUANG Z, TU H L, ZHANG J Q, et al. Development and Application of Proton Exchange Membrane Fuel Cells[M]. Beijing:Metallurgical Industry Press, 2000:5-29. |
[2] | 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京:化学工业出版社, 2003:230-240. YI B L. Fuel Cell-Principle·Technology·Application[M]. Beijing:Chemical Industry Press, 2003:230-240. |
[3] | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6):1231-1241. YE F, QU J L, ZHONG J Y, et al. Research progress of phase change thermal storage materials[J]. Chinese Journal of Process Engineering, 2010, 10(6):1231-1241. |
[4] | 田玉冬, 朱新坚, 曹广益. 质子交换膜燃料电池的温度实验分析[J]. 电池, 2005, 35(3):138-142. TIAN Y D, ZHU X J, CAO G Y. An analysis of the temperature test of proton exchange membrane fuel cell[J]. Battery, 2005, 35(3):138-142. |
[5] | COPPO M, SIEGEL N P, Spakovsky M R V. On the influence of temperature on PEM fuel cell operation[J]. Journal of Power Sources, 2006, 159(1):560-569. |
[6] | SCHNEIDER I A, SCHERER G G. Handbook of Fuel Cells[M]. New York:John Wiley & Sons, 2009:2. |
[7] | FENG K, HOU L, TANG B B, et al. Does thermal treatment merely make a H2O-saturated Nafion membrane lose its absorbed water at high temperature[J]. Physical Chemistry Chemical Physics, 2015, 17(14):9106-9115. |
[8] | KIM S, MENCH M M. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling:micro-structure effects[J]. Journal of Power Sources, 2007, 174(1):206-220. |
[9] | CHO E, KO J J, HA H Y, et al. Characteristics of the PEMFC repetitively brought to temperature below 0℃[J]. Journal of the Electrochemical Society, 2003, 150(12):A1667-A1670. |
[10] | YAN Q, TOGHIANI H, LEE Y W, et al. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components[J]. Journal of Power Sources, 2006, 160(2):1242-1250. |
[11] | MUKUNDAN R, KIM Y S, GARZON F H, et al. Freeze/thaw effects in PEM fuel cells[J]. ECS Transactions, 2006, 1(8):403-413. |
[12] | ROWE A, LI X G. Mathematical modeling of proton exchange membrane fuel cell[J]. Journal of Power Sources, 2001, 102(1/2):82-96. |
[13] | AFSHARI E, JAZAYERI S A. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance[J]. Energy Conversion and Management, 2010, 51(4):655-662. |
[14] | DUMERCY L, GLISES R, LOUAHLIA G H, et al. Thermal management of a PEMFC stack by 3D nodal modeling[J]. Journal of Power Sources, 2006, 156(1):78-84. |
[15] | LASBET Y, AUVITY B, CASTELAIN C, et al. A chaotic heat-exchanger for PEMFC cooling applications[J]. Journal of Power Sources, 2006, 156(1):114-118. |
[16] | SENN S M, POULIKAKOS D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2004, 130(1/2):178-191. |
[17] | CASTELAIN C, LASBET Y, AUVITY B, et al. Experi-mental study of the thermal performance of chaotic geometries for their use in PEM fuel cells[J]. International Journal of Thermal Sciences, 2016, 101(1):181-192. |
[18] | LARMINIE J. Fuel Cell Systems Explained[M]. DICKS A. 2nd ed. Chichester:John Wiley &Sons, 2003:51. |
[19] | SCHMIDT H, BUCHNER P, DATZ A, et al. Low-cost air-cooled PEFC stacks[J]. Journal of Power Sources, 2002, 105(2):243-249. |
[20] | TAKASHIBA T, YAGAWA S. Development of fuel cell coolant[J]. Honda R&D Technical Review, 2009, 21(1):58-62. |
[21] | INCROPERA F, DEWITT P, BERGMAN T L, et al. Introduction to Heat Transfer[M]. 5th ed. New York:John Wiley & Sons, 2006:126. |
[22] | WEN C Y, LIN Y S, LU C H. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined[J]. International Journal of Hydrogen Energy, 2011, 36(10):6082-6089. |
[23] | WEN C Y, HUANG G W. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell[J]. Journal of Power Sources, 2008, 178(1):132-140. |
[24] | FAGHRI A, GUO Z. Integration of heat pipe into fuel cell technology[J]. Heat Transfer Engineering, 2008, 29(3):232-238. |
[25] | FAGHRI A. Micro heat pipe embedded bipolar plate for fuel cell stacks:US0026015[P]. 2005-03-02. |
[26] | FAGHRI A. Integrated bipolar plate heat pipe for fuel cell stacks:US0037253[P]. 2005-02-17. |
[27] | 雷东强, 王秀春, 朱威力, 等. 热管技术在变压器中的应用研究[J]. 变压器, 2007, 44(1):37-40. LEI D Q, WANG X C, ZHU W L, et al. Research on application of heat pipe technology to transformer[J]. Transformer, 2007, 44(1):37-40. |
[28] | REISER C. Ion exchange membrane fuel cell power plant with water management pressure differentials:US5700595[P]. 1997-02-10. |
[29] | GOEBEL S G. Evaporative cooled fuel cell:US6960404[P]. 2005-11-01. |
[30] | BRAMBILLA M, MAZZUCCHELLI G. Fuel cell with cooling system based on direct injection of liquid water:US6835477[P]. 2004-12-28. |
[31] | ZHANG G S, SATISH G K. A critical review of cooling techniques in proton exchange membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2012, 37(3):2412-2429. |
[32] | FARID M M, KHUDHAIR A M, RAZACK S A, et al. A review on phase change energy storage:materials and applications[J]. Energy Convers Manage, 2004, 45(9/10):1597-1615. |
[33] | 李金辉, 刘晓兰, 张荣军, 等. 新型相变储能材料研究进展[J]. 化工新型材料, 2006, 34(8):18-21. LI J H, LIU X L, ZHANG R J, et al. Research and development of new phase change materials for heat energy storage[J]. New Chemical Materials, 2006, 34(8):18-21. |
[34] | DUTIL Y, ROUSSE D R, SALAH N B, et al. A review on phase-change materials:mathematical modeling and simu-lations[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1):112-130. |
[35] | PY X, OLIVES R, MAURAN S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat & Mass Transfer, 2001, 44(14):2727-2737. |
[36] | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345. |
[37] | XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48(9):2538-2548. |
[38] | MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14):1652-1661. |
[39] | ELGAFY A, LAFDI K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15):3067-3074. |
[40] | SABBAH R, AL-HALLAJ S. Natural convection with micro-encapsulated phase change material[J]. Journal of Heat Transfer, 2012, 134(8):243-250. |
[41] | KARAIPEKLI A,SARI A, KAYGUSUZ K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13):2201-2210. |
[42] | AL-HALLAJ S, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9):3231-3236. |
[43] | KⅡZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1):370-375. |
[44] | SAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials:a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137(15):61-67. |
[45] | JAVANI N, DINCER I, NATERER G F. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat and Mass Transfer, 2014, 72(1):690-703. |
[46] | RAO Z H, WANG S F. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12):3408-3414. |
[47] | ALRASHDAN A, MAYYAS, AL-HALLAJ S. Thermo-mechanical behaviors of the expanded graphite phase change material matrix used for thermal management of Li-ion battery packs[J]. Journal of Materials Processing Technology, 2010, 210(1):174-179. |
[48] | BREIT J S, BELLEVUE W A. Utilizing phase change material, heat pipes and fuel for aircraft applications:US0189594[P]. 2013-06-25. |
[49] | NISHⅡ M, ARAI H, SAKAI T, et al. Coolant and cooling system:US7501196[P]. 2009-03-10. |
[50] | SASMITO A P, SHAMIM T, MUJUMDAR A S. Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)[J]. Applied Thermal Engineering, 2013, 58(1/2):615-625. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||