CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 159-165.DOI: 10.11949/j.issn.0438-1157.20160555

Previous Articles     Next Articles

Numerical analysis of temperature frequency characteristics of surface acoustic wave sensor

LI Yingge1, MA Lianxiang2, ZHANG Na2, YUAN Shikui2, DU Dongxing2   

  1. 1 College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China;
    2 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-04-25 Revised:2016-05-06 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51476081).

声表面波传感器温度频率特性的数值分析

李莺歌1, 马连湘2, 张娜2, 袁世魁2, 杜东兴2   

  1. 1 青岛科技大学自动化与电子工程学院, 山东 青岛 266042;
    2 青岛科技大学机电工程学院, 山东 青岛 266061
  • 通讯作者: 马连湘,oldhorse@qust.edu.cn
  • 基金资助:

    国家自然科学基金项目(51476081)。

Abstract:

Numerical simulation has been carried out concerning the temperature frequency characteristics of a surface acoustic wave (SAW) sensor with ANSYS software. The internal temperature distribution of delay line surface acoustic wave sensor with Si/AlN/Al structure was analyzed under a certain pressure. The results show the effect of natural convection on the temperature field and stress field distribution in the sensor is small. The relationship between the temperature and the output resonant frequency is also simulated. According to the data fitting, the output series resonant frequency of the SAW sensor has a good linear relationship with the environmental temperature, so it can be used in the precise measurement of the temperature.

Key words: surface acoustic wave sensor, numerical simulation, heat conduction, membranes, microelectronics, temperature frequency characteristics

摘要:

利用ANSYS软件对声表面波传感器进行温度频率特性的数值模拟研究。分析了在一定压力情况下,基于氮化铝压电薄膜铝叉指换能器的延迟型传感器结构内部的温度有限元分布情况。结果表明外界自然对流对传感器内部的温度场及应力场分布影响很小。并模拟计算出温度与输出串联谐振频率变化的关系,通过数据拟合得出,SAW传感器的输出谐振频率与环境温度变化呈良好的线性关系,因此可应用于温度的精确测试。

关键词: 声表面波传感器, 数值模拟, 热传导, 膜, 微电子学, 温度频率特性

CLC Number: