CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2298-2305.DOI: 10.11949/j.issn.0438-1157.20161614
Previous Articles Next Articles
YU Jianliang, ZHENG Yangguang, YAN Xingqing, GUO Xiaolu, CAO Qi, ZHU Hailong, LIU Shaorong
Received:
2016-11-15
Revised:
2017-02-21
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161614
Supported by:
supported by the European Union 7th Framework Programme (FP7-ENERGY-2009-1 under grant agreement number 241346, FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102)
喻健良, 郑阳光, 闫兴清, 郭晓璐, 曹琦, 朱海龙, 刘少荣
通讯作者:
喻健良
基金资助:
欧盟第七框架(FP7-ENERGY-2009-1,协议号241346;FP7-ENERGY-2012-1-2STAGE,协议号309102)
CLC Number:
YU Jianliang, ZHENG Yangguang, YAN Xingqing, GUO Xiaolu, CAO Qi, ZHU Hailong, LIU Shaorong. Under-expanded jets and dispersion during big hole leakage of high pressure CO2 pipeline in industrial scale[J]. CIESC Journal, 2017, 68(6): 2298-2305.
喻健良, 郑阳光, 闫兴清, 郭晓璐, 曹琦, 朱海龙, 刘少荣. 工业规模CO2管道大孔泄漏过程中的射流膨胀及扩散规律[J]. 化工学报, 2017, 68(6): 2298-2305.
[1] | AGENCY I E. Energy Technology Perspectives 2012: Pathways to a Clean Energy System[M]. International Energy Agency, 2012. |
[2] | RIAN K E, GRIMSMO B, LAKSA B, et al. Advanced CO2 dispersion simulation technology for improved CCS safety[J]. Energy Procedia, 2014, 63: 2596-2609. |
[3] | WEE J H. A review on carbon dioxide capture and storage technology using coal fly ash[J]. Appl. Energ., 2013, 106(11): 143-151. |
[4] | KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts[J]. J. Hazard. Mater., 2010, 177(1/2/3): 12-27. |
[5] | MOLAG M, DAM C. Modelling of accidental from a high pressure CO2 pipelines[J]. Energy Procedia, 2011, 4: 2301-2307. |
[6] | GANT S E, NARASIMHAMURTHY V D, SKJOLD T, et al. Evaluation of multi-phase atmospheric dispersion models for application to carbon capture and storage[J]. J. Loss Prevent. Proc., 2014, 32: 286-298. |
[7] | UDDIN M, JAFARI A, PERKINS E. Effects of mechanical dispersion on CO2 storage in Weyburn CO2-EOR field—numerical history match and prediction[J]. Int. J. Greenh. Gas Con., 2013, 16(8): S35-S49. |
[8] | WITLOX H W M, HARPER M, OKE A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases[J]. J. Loss Prevent. Proc., 2009, 22(6): 795-802. |
[9] | LUND H, FLATTEN T, MUNKEJORD S T. Depressurization of carbon dioxide in pipelines models and methods[J]. Energy Procedia, 2011, 4(22): 2984-2991. |
[10] | MAZZOLDI A, HILL T, COLLS J J. Assessing the risk for CO2 transportation within CCS projects, CFD modelling[J]. Int. J. Greenh. Gas Con., 2011, 5(4): 816-825. |
[11] | MAZZOLDI A, PICARD D, SRIRAM P G, et al. Simulation-based estimates of safety distances for pipeline transportation of carbon dioxide[J]. Greenhouse Gases Science & Technology, 2013, 3(1): 66-83. |
[12] | MAZZOLDI A, HILL T, COLLS J J. CO2 transportation for carbon capture and storage: sublimation of carbon dioxide from a dry ice bank[J]. Int. J. Greenh. Gas Con., 2008, 2(2): 210-218. |
[13] | HERZOG N, EGBERS C. Atmospheric dispersion of CO2, released from pipeline leakages[J]. Energy Procedia, 2013, 40: 232-239. |
[14] | WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. Int. J. Greenh. Gas Con., 2014, 27(8): 221-238. |
[15] | WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. Experimental measurement and Reynolds-averaged Navier-Stokes modelling of the near-field structure of multi-phase CO2 jet releases[J]. Int. J. Greenh. Gas Con., 2013, 18(7): 139-149. |
[16] | WOOLLEY R M, FAIRWEATHER M, WAREING C J, et al. CO2 PipeHaz: quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529. |
[17] | 刘振翼, 周轶, 黄平, 等. CO2管线泄漏扩散小尺度实验研究[J]. 化工学报, 2012, 63(5): 1651-1659. |
LIU Z Y, ZHOU Y, HUANG P, et al. Scaled field test for CO2 leakage and dispersion from pipelines[J]. CIESC Journal, 2012, 63(5): 1651-1659. | |
[18] | XING J, LIU Z Y, HUANG P, et al. Experimental and numerical study of the dispersion of carbon dioxide plume[J]. J. Hazard. Mater., 2013, 257(1): 40-48. |
[19] | XING J, LIU Z Y, HUANG P, et al. CFD validation of scaling rules for reduced-scale field releases of carbon dioxide[J]. Appl. Energ., 2014, 115(4): 525-530. |
[20] | XIE Q Y, TU R, JIANG X, et al. The leakage behavior of supercritical CO2 flow in an experimental pipeline system[J]. Appl. Energ., 2014, 130(5): 574-580. |
[21] | 李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 合肥: 中国科学技术大学, 2016. |
LI K. The physical mechanism of the supercritical CO2 leakage process in small scale laboratory conditions[D]. Hefei: University of Science and Technology of China, 2016. | |
[22] | LI K, ZHOU X, TU R, et al. The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline[J]. Energy, 2014, 71(21): 665-672. |
[23] | LI K, ZHOU X, TU R, et al. An experiment investigation of supercritical CO2 accidental release from a pressurized pipeline[J]. J. Supercrit. Fluid, 2016, 107: 298-306. |
[24] | AHMAD M, LOWESMITH B, KOEIJER G D, et al. COSHER joint industry project: large scale pipeline rupture tests to study CO2 release and dispersion[J]. Int. J. Greenh. Gas Con., 2015, 37: 340-353. |
[25] | LIU X, GODBOLE A, CHENG L, et al. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state[J]. Appl. Energ., 2014, 126: 56-58. |
[26] | LIU X, GODBOLE A, LU C, et al. Study of the consequences of CO2 released from high-pressure pipelines[J]. Atmospheric Environment, 2015, 116: 51-64. |
[27] | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
YU J L, GUO X L, YAN X Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
[28] | GUO X L, YAN X Q, YU J L, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale popeline[J]. Energy, 2017, 118: 1066-1078. |
[29] | GUO X L, YAN X Q, YU J L, et al. Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline[J]. Appl. Energ., 2016, 183: 1279-1291. |
[30] | GUO X L, YAN X Q, YU J L, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Appl. Energ., 2016, 178: 189-197. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[5] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[6] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[9] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[10] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[13] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[14] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[15] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 405
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||