CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2280-2289.DOI: 10.11949/j.issn.0438-1157.20161749
Previous Articles Next Articles
LIU Baoqing1, ZHENG Yijun1, LIANG Huili2, WANG Manman1, JIN Zhijiang1
Received:
2016-12-14
Revised:
2017-03-17
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20161749
Supported by:
supported by the Natural Science Foundation of Zhejiang Province (LY16B060003), the Program for Zhejiang Leading Team of S&T Innovation (2011R50005) and the National Natural Science Foundation of China (21206144)
刘宝庆1, 郑毅骏1, 梁慧力2, 王曼曼1, 金志江1
通讯作者:
金志江
基金资助:
浙江省自然科学基金项目(LY16B060003);浙江省重点科技创新团队项目(2011R50005),国家自然科学基金项目(21206144)
CLC Number:
LIU Baoqing, ZHENG Yijun, LIANG Huili, WANG Manman, JIN Zhijiang. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer[J]. CIESC Journal, 2017, 68(6): 2280-2289.
刘宝庆, 郑毅骏, 梁慧力, 王曼曼, 金志江. 剪切变稀体系同心双轴搅拌釜内的气液分散模拟[J]. 化工学报, 2017, 68(6): 2280-2289.
[1] | REWATKAR V B, DESHPANDE A J, PANDIT A B, et al. Gas hold-up behavior of mechanically agitated gas-liquid reactors using pitched blade downflow turbines[J]. The Canadian Journal of Chemical Engineering, 1993, 71(2): 226-237. |
[2] | SMITH J M, GAO Z, MULLER-STEINHAGEN H. The effect of temperature on the void fraction in gas-liquid reactors[J]. Experimental Thermal and Fluid Science, 2004, 28(5): 473-478. |
[3] | XU G J, LI Y M, HOU Z Z, et al. Gas-liquid dispersion and mixing characteristics and heat transfer in a stirred vessel[J]. The Canadian Journal of Chemical Engineering, 1997, 75(2): 299-306. |
[4] | 张津津, 高正明, 尹连清, 等. 热态气-液多层桨搅拌槽内的气液分散和传质性能[J]. 北京化工大学学报(自然科学版), 2015, 42(6): 15-20. |
ZHANG J J, GAO Z M, YIN L Q, et al. Gas dispersion and mass transfer in a hot-sparged multi-impeller stirred tank[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 42(6): 15-20. | |
[5] | 王嘉骏, 李良超, 顾雪萍, 等. 搅拌反应器内气液两相流的CFD研究进展[J]. 化工设备与管道, 2012, 49(1): 1-4. |
WANG J J, LI L C, GU X P, et al. Progress on CFD simulation of gas-liquid two-phase flow in stirred tank reactor[J]. Process Equipment & Piping, 2012, 49(1): 1-4. | |
[6] | RAMEZANI M, KONG B, GAO X. Experimental measurement of oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor[J]. Chemical Engineering Journal, 2015, 279: 286-296. |
[7] | MONTANTE G, PAGLIANTI A. Gas hold-up distribution and mixing time in gas-liquid stirred tanks[J]. Chemical Engineering Journal, 2015, 279: 648-658. |
[8] | LEE B W, DUDUKOVIC M P. Time-series analysis of optical probe measurements in gas-liquid stirred tanks[J]. Chemical Engineering Science, 2014, 116: 623-634. |
[9] | JADE A M, JAYARAMAN V K, KULKARNI B D, et al. A novel local singularity distribution based method for flow regime identification: gas-liquid stirred vessel with Rushton turbine[J]. Chemical Engineering Science, 2006, 61(2): 688-697. |
[10] | LINES P C. Gas-liquid mass transfer using surface-aeration in stirred vessels, with dual impellers[J]. Chemical Engineering Research and Design, 2000, 78(3): 342-347. |
[11] | 王云兴, 汪兵, 任聪静, 等. 气液搅拌釜泛点转速的声波测量[J]. 化工学报, 2009, 60(5): 1148-1155. |
WANG Y X, WANG B, REN C J, et al. Identification of flooding-loading transition in stirred vessel based on acoustic method[J]. CIESC Journal, 2009, 60(5): 1148-1155. | |
[12] | 周珍. 气体分布器及搅拌桨组合对搅拌槽内气液流特性影响的实验研究[D]. 上海: 华东理工大学, 2014. |
ZHOU Z. Characteristics of gas-liquid flows in stirred tank bioreactor[D]. Shanghai: East China University of Science and Technology, 2014. | |
[13] | 郭晓攀, 周国忠, 龙湘梨, 等. 组合桨搅拌槽内非牛顿流体的气液分散特性[J]. 化学工程, 2005, 43(7): 44-48. |
GUO X P, ZHOU G Z, LONG X L, et al. Gas-liquid dispersion characteristics of non-Newton fluid in multi-impeller stirred tank[J]. Chemical Engineering (China), 2015, 43(7): 44-48. | |
[14] | GABELLE J C, AUGIER F, CARVALHO A, et al. Effect of tank size on k(L)a and mixing time in aerated stirred reactors with non-Newtonian fluids[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5): 1139-1153. |
[15] | GOMEZ-DIAZ D, NAVAZA J M. Analysis of carbon dioxide gas/liquid mass transfer in aerated stirred vessels using non-Newtonian media[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(10): 1105-1112. |
[16] | TECANTE A, CHOPLIN L. Gas-liquid mass transfer in non-Newtonian fluids in a tank stirred with a helical ribbon screw impeller[J]. The Canadian Journal of Chemical Engineering, 1993, 71(6): 859-865. |
[17] | 肖颀, 杨宁. 基于EMMS 模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739. |
XIAO Q, YANG N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739. | |
[18] | WANG W J, MAO Z S, YANG C. Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller[J]. Industrial & Engineering Chemistry Research, 2006, 45(3): 1141-1151. |
[19] | TAGHAVI M, ZADGHAFFARI R, MOGHADDAS J. Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank[J]. Chemical Engineering Research and Design, 2011, 89(3): 280-290. |
[20] | KHOPKAR A R, RAMMOHAN A R, RANADE V V, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science, 2005, 60(8): 2215-2229. |
[21] | KHOPKAR A R, RANADE V V. CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes[J]. AIChE Journal, 2006, 52(5): 1654-1672. |
[22] | KHOPKAR A R, TANGUY P A. CFD simulation of gas-liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations[J]. Chemical Engineering Science, 2008, 63(14): 3810-3820. |
[23] | PETITTI M, VANNI M, MARCHISIO D L, et al. Simulation of coalescence, break-up and mass transfer in a gas-liquid stirred tank with CQMOM[J]. Chemical Engineering Journal, 2013, 228: 1182-1194. |
[24] | LIU B Q, HUANG B L, ZHANG Y N, et al. Numerical study on gas dispersion characteristics of a coaxial mixer with viscous fluids[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 54-61. |
[25] | 沙作良, 伍倩, 王学魁. 不同黏度下气液体系流体力学行为的PBM模拟[J]. 化工进展, 2009, 28(S): 382-387. |
SHA Z L, WU Q, WANG X K. PBM simulation on fluid mechanics of gas-liquid system with different viscosity[J]. Chemical Industry and Engineering Progress, 2009, 28(S): 382-387. | |
[26] | MOILANEN P, LAAKKONEN M, AITTAMAA J. Modeling aerated fermenters with computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2006, 45(25): 8656-8663. |
[27] | MOILANEN P, LAAKKONEN M, VISURI O, et al. Modeling local gas-liquid mass transfer in agitated viscous shear-thinning dispersions with CFD[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7289-7299. |
[28] | MARQARITIS A, TE BOKKEL D W, KARAMANEV D G, et al. Bubble rise velocities and drag coefficients in non-Newtonian polysaccharide solutions[J]. Biotechnology and Bioengineering, 1999, 64(3): 257-266. |
[29] | LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
[30] | COULALOGLOU C A, TAVLARIDES L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297. |
[31] | CHESTERS K A. The modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding[J]. Chemical Engineering Research and Design, 1991, 69(4): 259-270. |
[32] | LAAKKONEN M. Development and validation of mass transfer models for the design of agitated gas-liquid reactors[D]. Espoo: Helsinki University of Technology, 2006. |
[33] | BAO Y Y, YANG B, XIE Y, et al. Power demand and mixing performance of coaxial mixers in non-Newtonian fluids[J]. Journal of Chemical Engineering of Japan, 2011, 44(2): 57-66. |
[34] | 谢泳, 包雨云, 刘涛, 等. 同心双轴复合式搅拌釜用于牛顿流体时的功耗及混合特性[J]. 过程工程学报, 2010, 10(3): 424-430. |
XIE Y, BAO Y Y, LIU T, et al. Power demand and mixing performance of coaxial mixers in Newtonian liquids[J]. The Chinese Journal of Process Engineering, 2010, 10(3): 424-430. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 771
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 420
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||