CIESC Journal ›› 2017, Vol. 68 ›› Issue (9): 3482-3493.DOI: 10.11949/j.issn.0438-1157.20170426

Previous Articles     Next Articles

Active disturbance rejection control on gas flow equipment by multivariable decoupling algorithm

ZHAO Yue1, SUN Lijun1,3, WU Xia2, CHEN Zengqiang2, TANG Bing1,3   

  1. 1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
    2 College of Computer and Control Engineering, Nankai University, Tianjin 300350, China;
    3 Tianjin Flowrate Measurement & Control Technology Co., Ltd., Tianjin 300384, China
  • Received:2017-04-19 Revised:2017-05-19 Online:2017-09-05 Published:2017-09-05
  • Contact: 10.11949/j.issn.0438-1157.20170426
  • Supported by:

    supported by the National Natural Science Foundation of China (61573199).

多变量解耦自抗扰控制在气体流量装置中的应用

赵越1, 孙立军1,3, 吴瑕2, 陈增强2, 唐冰1,3   

  1. 1 天津大学电气自动化与信息工程学院, 天津 300072;
    2 南开大学计算机与控制工程学院, 天津 300350;
    3 天津福路瑞特测控技术有限公司, 天津 300384
  • 通讯作者: 孙立军
  • 基金资助:

    国家自然科学基金项目(61573199)。

Abstract:

mathematical model was established for pressure-flow coupling system in gas flow equipment by mechanism modeling and step-response methods.The performance stability and control rapidity in gas flowmeter testing were improved by a decoupling control,active disturbance rejection control (ADRC).For the multivariable system of gas flow equipment,a decentralized ADRC integrated coupling effects,internal uncertainties,and external disturbance into a total disturbance,which was estimated by reduced-order extended state observer (RESO) and cancelled out by control law.The original coupling system was then decoupled into two subsystems of single-input and single-output and controlled by proportional differential controllers.Stability and stability margin of the ADRC controlled system were analyzed by frequency domain method.ADRC achieved system decoupling,reduced algorithm dependency on mathematical model,and improved system robustness.Simulation and experiment results show that ADRC algorithm has shorter settling time,better decoupling effect,greater disturbance rejecting capability,and more robust performance than PID controller.

Key words: gas flow equipment, process systems, model, decoupling algorithm, active disturbance rejection control, computer simulation

摘要:

针对气体流量装置实验管路流量、压力耦合系统,通过机理法和阶跃响应法建立了其数学模型,并利用自抗扰解耦控制算法实现其解耦控制,以保证气体流量计性能测试过程的稳定性和控制快速性。对于气体流量装置多变量系统,自抗扰控制算法将耦合以及所有的内部不确定性和外部扰动都归结到总扰动中,通过扩张状态观测器和控制律对总扰动进行估计和补偿,使原系统被解耦成两个单输入单输出的子系统并利用PD控制器完成控制。自抗扰控制算法使系统在实现解耦的同时既减弱算法对于模型的依赖,又提高了系统的鲁棒性。仿真和实验结果表明,与PID控制算法相比,自抗扰控制算法调节时间更快,解耦效果更好,对扰动的抑制效果更优,性能鲁棒性更强。

关键词: 气体流量装置, 过程系统, 模型, 解耦算法, 自抗扰控制, 计算机模拟

CLC Number: