[1] |
WAN J F, GU J, ZHAO Q, et al. COD capture:a feasible option towards energy self-sufficient domestic wastewater treatment[J]. Scientific Reports, 2016, 6(4):1-9.
|
[2] |
OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:principles and applications. A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23):2577-2641.
|
[3] |
SANTÍN I, PEDRET C, VILANOVA R, et al. Removing violations of the effluent pollution in a wastewater treatment process[J]. Chemical Engineering Journal, 2015, 279(11):207-219.
|
[4] |
JUDD S J. The status of industrial and municipal effluent treatment with membrane bioreactor technology[J]. Chemical Engineering Journal, 2016, 305(12):37-45.
|
[5] |
ÅMAND L, CARLSSON B. Optimal aeration control in a nitrifying activated sludge process[J]. Water Research, 2012, 46(7):2101-2110.
|
[6] |
HREIZ R, LATIFI M A, ROCHE N. Optimal design and operation of activated sludge processes:state-of-the-art[J]. Chemical Engineering Journal, 2015, 281(12):900-920.
|
[7] |
OSTACE G S, BAEZA J A, GUERRERO J, et al. Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus[J]. Computers and Chemical Engineering, 2013, 53(6):164-177.
|
[8] |
SANTIN I, PEDRET C, VILANOVA R. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process[J]. Journal of Process Control, 2015, 28(4):40-55.
|
[9] |
韩广, 乔俊飞, 韩红桂, 等. 基于Hopfield神经网络的污水处理过程优化控制[J]. 控制与决策, 2014, 29(11):2085-2088. HAN G, QIAO J F, HAN H G, et al. Optimal control for wastewater treatment process based on Hopfield neural network[J]. Control and Decision, 2014, 29(11):2085-2088.
|
[10] |
MACHADO V C, GABRIEL D, LAFUENTE J, et al. Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP[J]. Water Research, 2009, 43(20):5129-5141.
|
[11] |
QIAO J F, BO Y C, CHAI W, et al. Adaptive optimal control for a wastewater treatment plant based on a data-driven method[J]. Water Science and Technology, 2013, 67(10):2314-2320.
|
[12] |
DAI H L, CHEN W L, LU X W. The application of multi-objective optimization method for activated sludge process:a review[J]. Water Science and Technology, 2016, 73(2):223-235.
|
[13] |
HAKANEN J, SAHLSTEDT K, MIETTINEN K. Wastewater treatment plant design and operation under multiple conflicting objective functions[J]. Environmental Modelling and Software, 2013, 46(4):240-249.
|
[14] |
SWEETAPPLE C, FU G T, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55(2):52-62.
|
[15] |
HREIZ R, ROCHE N, BENYAHIA B, et al. Multi-objective optimal control of small-size wastewater treatment plants[J]. Chemical Engineering Research and Design, 2015, 102(7):345-353.
|
[16] |
CHEN W L, LU X W, YAO C H. Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process[J]. Chemical Engineering Journal, 2015, 260(9):492-502.
|
[17] |
ZHANG R, XIE W M, YU H Q, et al. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J]. Bioresource Technology, 2014, 157(2):161-165.
|
[18] |
QIAO J F, ZHANG W. Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2016, 28(10):1-11.
|
[19] |
KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceeding of IEEE International Conference on Neural Networks. 1995:1942-1948.
|
[20] |
COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279.
|
[21] |
HU W, YEN G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system[J]. IEEE Transactions on Evolutionary Computation, 2015, 19(1):1-18.
|
[22] |
TRIPATHI P K, BANDYOPADHYAY S, PAL S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information Sciences, 2007, 177(22):5033-5049.
|
[23] |
KENNEDY J. Bare bones particle swarms[C]//Proceedings of IEEE Swarm Intelligence Symposium. 2003:80-87.
|
[24] |
ZHANG Y, GONG D W, DING Z H. A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch[J]. Information Sciences, 2012, 192(6):213-227.
|
[25] |
ZHANG Y, GONG D W, GENG N, et al. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects[J]. Applied Soft Computing, 2014, 18(5):248-260.
|
[26] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
|
[27] |
ZHANG Q F, LI H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
|
[28] |
ZAPOTECAS MARTÍNEZ S, COELLO COELLO C A. A multi-objective particle swarm optimizer based on decomposition[C]//Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. 2011:69-76.
|
[29] |
乔俊飞, 周红标. 基于自组织模糊神经网络的出水总磷预测[J]. 控制理论与应用, 2017, 34(2):224-232. QIAO J F, ZHOU H B. Prediction of effluent total phosphorus based on self-organizing fuzzy neural network[J]. Control Theory and Applications, 2017, 34(2):224-232.
|
[30] |
周红标. 基于自组织模糊神经网络的污水处理过程溶解氧控制[J]. 化工学报, 2017, 68(4):1516-1524. ZHOU H B. Dissolved oxygen control of the wastewater treatment process using self-organizing fuzzy neural network[J]. CIESC Journal, 2017, 68(4):1516-1524.
|
[31] |
JEPPSSON U, PONS M N. The COST benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3):299-304.
|
[32] |
HAN H G, QIAN H H, QIAO J F. Nonlinear multiobjective model-predictive control scheme for wastewater treatment process[J]. Journal of Process Control, 2014, 24(3):47-59.
|
[33] |
YANG S X, JIANG S Y, JIANG Y. Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes[J]. Soft Computing, 2016, 21(2):1-15.
|
[34] |
LIN Q Z, LI J Q, DU Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of Operational Research, 2015, 247(3):732-744.
|
[35] |
LIN Q Z, CHEN J Y, ZHAN Z H, et al. A hybrid evolutionary immune algorithm for multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5):711-729.
|