CIESC Journal ›› 2017, Vol. 68 ›› Issue (S1): 9-17.DOI: 10.11949/j.issn.0438-1157.20170411
Previous Articles Next Articles
WANG Mei, NIU Donghua, HU Qi, XIN Yanbo, SHI Hongliang, HUANG Anping
Received:
2017-04-17
Revised:
2017-04-20
Online:
2017-08-31
Published:
2017-08-31
Supported by:
supported by the National Natural Science Foundation of China(11574017,51372008).
王玫, 牛栋华, 胡琪, 辛延波, 时洪亮, 黄安平
通讯作者:
王玫,rose@buaa.edu.cn
基金资助:
国家自然科学基金项目(11574017,51372008)。
CLC Number:
WANG Mei, NIU Donghua, HU Qi, XIN Yanbo, SHI Hongliang, HUANG Anping. Progress of hydrogen permeation barrier adjusted by two-dimensional materials[J]. CIESC Journal, 2017, 68(S1): 9-17.
王玫, 牛栋华, 胡琪, 辛延波, 时洪亮, 黄安平. 二维材料调控阻氢涂层研究进展[J]. 化工学报, 2017, 68(S1): 9-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170411
[1] | MARCHI C S,SOMERDAY B P,TANG X, et al. Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels[J]. International Journal of Hydrogen Energy,2008,33(2):889-904. |
[2] | SMITH D L,KONYS J,MUROGA T,et al. Development of coatings for fusion power applications[J]. Journal of Nuclear Materials,2002,307(2):1314-1322. |
[3] | LI J,WANG Z F,LEI D Q,et al. Hydrogen permeation model of parabolic trough receiver tube[J]. Solar Energy,2012,86(5):1187-1196. |
[4] | TANAKA K,HAYASHI Y,KIMURA M,et al. Hydrogen absorbing and desorbing properties of Nd-Fe-B and Nd-Co-B amorphous alloys[J]. Journal of Alloys and Compounds,1997,253(1):101-105. |
[5] | BENAMATI G,CHABROL C,PERUJO A,et al. Development of tritium permeation barriers on Al base in Europe[J]. Journal of Nuclear Materials,1999,271(1):391-395. |
[6] | AIELLO A,CIAMPICHETTI A,BENAMATI G. An overview on tritium permeation barrier development for WCLL blanket concept[J]. Journal of Nuclear Materials,2004,329(2):1398-1402. |
[7] | 李兴彦,黄永章,张新,等. 防氢渗透涂层的研究进展[J]. 金属功能材料,2011,18(2):74-78. LI X Y,HUANG Y Z,ZHANG X, et al. Review on tritium penetration barrier[J]. Metallic Functional Materials,2011,18(2):74-78. |
[8] | 李群. 典型氧化物氢同位素渗透阻挡涂层研究[D]. 北京:北京科技大学,2016. LI Q. Study on typical oxide hydrogen-isotopes permeation barriers[D]. Beijing:University of Science & Technology Beijing,2016. |
[9] | HUANG Q Y,SONG Y,GUO Z H,et al. The R&D on multi-functional coatings for liquid metal lithium-lead blankets of fusion reactors[J]. Chinese Journal of Nuclear Science and Engineering,2008,28(3):256-262. |
[10] | WANG P,LIU J,WANG J, et al. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation interaction of hydrogen plasma with SiC/SiC composite[J]. Surface and Coating Technology,2000,128/129:99-104. |
[11] | 姚振宇,严辉,谭利文,等. 用SiC薄膜作防氚渗透阻挡层的研究[J]. 核聚变与等离子体物理,2002,22(2):65-70. YAO Z Y,YAN H,TAN L W,et al. Research on SiC film as tritium permeation barrier[J]. Nuclear Fusion and Plasma Physics,2002,22(2):65-70. |
[12] | CHIKADA T,SUZUKI A,TERAI T. Deuterium permeation and thermal behaviors of amorphous silicon carbide coatings on steels[J]. Fusion Engineering and Design,2011,86:2192-2195. |
[13] | NEMANIC V,MCGUINESS P,DANEU N,et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds,2012,539:184-189. |
[14] | ZHANG R Q,LIU Y G,HUANG N K. Effects of hydrogen ion implantation on TiC-C coating of stainless steel[J]. Journal of Iron & Steel Research International,2008,15(4):77-81. |
[15] | CHIKADA T,NAITOH S,SUZUKI A,et al. Deuterium permeation through erbium oxide coatings on RAFM steels by a dip-coating technique[J]. Journal of Nuclear Materials,2013,442:533-537. |
[16] | SUBANOVIC M,NAUMENKO D,KAMRUDDIN M,et al. Blistering of MCrAlY-coatings in H2/H2O-atmospheres[J]. Corrosion Science,2009,51(3):446-450. |
[17] | XIE D G,WANG Z G,SUN J,et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials,2015,14(9):899-903. |
[18] | PRICE H,FORRISTALL R,WENDELIN T,et al. Field survey of parabolic trough receiver thermal performance[C]//Proceedings of the ASME International Solar Energy Conference. Denver,2006:109-116. |
[19] | http://www.spaceman.com.cn/i.php?id=156. |
[20] | http://www.cspplaza.com/article-2513-1.html. |
[21] | NAIR R R,BLAKE P,GRIGORENKO A N,et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308. |
[22] | BALANDIN A A,GHOSH S,BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3):902-907. |
[23] | LEE C,WEI X D,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388. |
[24] | MIAO M,NARDELLI M B,WANG Q,et al. First principles study of the permeability of graphene to hydrogen atoms[J]. Chysical Chemistry Chemical Physics,2013,15(38):16132-16137. |
[25] | BUNCH J S,VERBRIDGE S S,ALDEN J S,et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters,2008,8(8):2458-2462. |
[26] | TSETSERIS L,PANTELIDES S T. Graphene:an impermeable or selectively permeable membrane for atomic species?[J]. Carbon,2014,67:58-63. |
[27] | NOVOSELOV K S,JIANG D,SCHEDIN F,et al. Two-dimensional atomic crystals[J]. Proc. Natl. Acad. Sci.,2005,102(30):10451-10453. |
[28] | GEIM A K,GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature,2013,499(25):419-425. |
[29] | MIURA Y,KASAI H,DINO W A,et al. Effective pathway for hydrogen atom adsorption on graphene[J]. Journal of the Physical Society of Japan,2003,72(5):995-997. |
[30] | VIKAS B. Impermeability of graphene and its applications[J]. Carbon,2013,62:1-10. |
[31] | HU S. Proton transport through two-dimensional materials[D]. Manchester:University of Manchester,2014. |
[32] | HU S,LOZADA-HIDALGO M,WANG F C,et al. Proton transport through one-atom-thick crystals[J]. Nature,2014,516(7530):227-230. |
[33] | SEEL M,PANDEY R. Proton and hydrogen transport through two-dimensional monolayers[J]. 2D Materials,2016,3(2):025004. |
[34] | ACHTYL J L,UNOCIC R R,XU L J, et al. Aqueous proton transfer across single-layer graphene[J]. Nature Communications,2015,6:6539. |
[35] | LOZADA-HIDALGO M,HU S,MARSHALL O,et al. Sieving hydrogen isotopes through two-dimensional crystals[J]. Science,2016,351(6268):68-70. |
[36] | CELEBI K,BUCHHEIM J,WYSS R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science,2014,344(6181):289-292. |
[37] | O'HERN S C,JANG D,BOSE S, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene[J]. Nano Letters,2015,15(5):3254-3260. |
[38] | BOUTILIER MICHAEL S H,SUN C Z,O'HERN S C,et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J]. ACS Nano,2014,8(1):841-849. |
[39] | YANG X W,QIU L,CHENG C,et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angewandte Chemie-International Edition,2011,50(32):7325-7328. |
[40] | YANG X,CHENG C,WANG Y,et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. |
[41] | 宋文海,杜家驹. 陶瓷-金属复合体系氢同位素渗透模型[J]. 核聚变与等离子体物理,1998,18(3):9-16. SONG W H,DU J J. A model for hydrogen isotope permeation through metals with ceramic film barriers[J]. Nuclear Fusion and Plasma Physics,1998,18(3):9-16. |
[42] | 李勇峰. 氢在钢中的渗透特性及镀层阻氢渗透机理的研究[D]. 上海:华东理工大学,2012. LI Y F. Research on hydrogen permeation characteristic in steels and hydrogen permeation resistance mechanism of plating[D]. Shanghai:East China University of Science and Technology,2012. |
[43] | GU P C,ZHANG K L,FENG Y L, et al. Recent progress of two-dimensional layered molybdenum disulfide[J]. Acta Physica Sinica,2016,65(1):018102. |
[44] | KIRKLAND N T,SCHILLER T,MEDHEKAR N,et al. Exploring graphene as a corrosion protection barrier[J]. Corros. Sci.,2012,56:1-4. |
[45] | LEENAERTS O,PARTOENS B,PEETERS F M. Graphene:a perfect nanoballoon[J]. Applied Physics Letters,2008,93(19):193107. |
[46] | GEORGIOU T,BRITNELL L,BLAKE P,et al. Graphene bubbles with controllable curvature[J]. Appl. Phys. Lett.,2011,99(9):093103. |
[47] | JOHN R. ASHOKREDDY A,VIJAYAN C,et al. Single-and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition[J]. Nanotechnology,2011,22(16):165701. |
[48] | YUAN G D,ZHANG W J,YANG Y,et al. Graphene sheets via microwave chemical vapor deposition[J]. Chem. Phys. Lett.,2009,467(4):361-364. |
[49] | LI X S,ZHU Y W,CAI W W,et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Letters, 2009,9(12):4259-4363. |
[50] | HU B,AGO H,ITO Y,et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD[J]. Carbon,2012,50:57-65. |
[51] | LI X,CAI W,COLOMBO L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters,2009,9(12):4268-4272. |
[52] | ZHU Y X,DUAN C Y,LIU H Y,et al. Graphene coating for anti-corrosion and the investigation of failure mechanism[J]. J. Phys. D:Appl. Phys., 2017,50:114001. |
[53] | YOON T,MUN J H,CHO B J, et al. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers[J]. Nanoscale,2014,6(1):151-156. |
[54] | PRASAI D,TUBERQUIA J C,HARL R,et al. Graphene:corrosion-inhibiting coating[J]. ACS Nano,2012,6(2):1102-1108. |
[55] | HSIEH Y P,HOFMANN M,CHANG K W,et al. Complete corrosion inhibition through graphene defect passivation[J]. ACS Nano,2014,8(1):443-448. |
[56] | YE X H,LONG J Y,LIN Z,et al. Direct laser fabrication of large-area and patterned graphene at room temperature[J]. Carbon,2014,68:784-790. |
[57] | YE X H,LIN Z,ZHANG H J,et al. Protecting carbon steel from corrosion by laser in situ grown graphene films[J]. Carbon,2015,94:326-334. |
[58] | WANG L J,LI L,YU J F,et al. Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying deposition[J]. Carbon, 2014,79:294-301. |
[59] | KIM H W,YOON H W,YOON S M. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science,2013,342(6154):91-95. |
[60] | CHENG C,JIANG G,GARVEY C J,et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing[J]. Science Advances,2016,2(2):e1501272. |
[61] | 张瑞谦. SiC-C涂层阻氢性能的研究[D]. 成都:四川大学,2007. ZHANG R Q. Study on hydrogen retarding property of SiC-C films[D]. Chengdu:Sichuan University,2007. |
[62] | TAMURA M,EGUCHI T. Nanostructured thin films for hydrogen-permeation barrier[J]. Journal of Vacuum Science & Technology A,2015,33(4):041503. |
[63] | ZHANG R Q,LIU Y G,HUANG N K. Effects of hydrogen ion implantation on TiC-C coating of stainless steel[J]. Journal of Iron & Steel Research International,2008,15(4):77-81. |
[64] | TAMURA M,NOMA M,YAMASHITA M,et al. Characteristic change of hydrogen permeation in stainless steel plate by BN coating[J]. Surface & Coatings Technology, 2014,260:148-154. |
[65] | 何迪. Cr2O3/Al2O3阻氢渗透涂层制备与性能研究[D]. 北京:北京有色金属研究总院,2014. HE D. Study on the preparation and property of the Cr2O3/Al2O3 hydrogen permeation barrier[D]. Beijing:General Research Institute for Nonferrous Metals,2014. |
[66] | 郜健. 氧化铝/氧化锆复合涂层的制备及其氢渗透性能研究[D]. 北京:北京有色金属研究总院,2014. GAO J. Investigation of preparation and hydrogen permeation properties of alumina/zirconia composite coating[D]. Beijing:General Research Institute for Nonferrous Metals,2014. |
[67] | LI Q,WANG J,XIANG Q Y,et al. Study on influence factors of permeation reduction factor of Al2O3-hydrogen isotopes permeation barriers[J]. International Journal of Hydrogen Energy, 2016,41(7):4326-4331. |
[68] | ZHANG G K,DOU S P,LU Y J,et al. Mechanism for adsorption,dissociation and diffusion of hydrogen permeation in hydrogen permeation barrier of α-Al2O3:the role of crystal orientation[J]. International Journal of Hydrogen Energy, 2014,39(1):610-619. |
[69] | TANABE T. Tritium fuel cycle in ITER and DEMO:issues in handling large amount of fuel[J]. Journal of Nuclear Materials, 2013,438:S19-S26. |
[70] | LI J,WANG Z F,LEI D Q,et al. Hydrogen permeation model of parabolic trough receiver tube[J]. Solar Energy, 2012,86:1187-1196. |
[71] | PEREIRA P A S,FRANCO C S G,GUERRA FILHO J L M,et al. Hydrogen effects on the microstructure of a 2.25Cr-1Mo-0.25V steel welded joint[J]. International Journal of Hydrogen Energy,2015,40(47):17136-17143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||