[1] |
VIDAL P, GALLEGO E, GUAITA M, et al. Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper[J]. Journal of Constructional Steel Research, 2008, 64(4):480-492.
|
[2] |
YU Y, SAXÉN H. Segregation behavior of particles in a top hopper of a blast furnace[J]. Powder Technology, 2014, 262:233-241.
|
[3] |
KETTERHAGEN W R, HANCOCK B C. Optimizing the design of eccentric feed hoppers for tablet presses using DEM[J]. Computers & Chemical Engineering, 2010, 34(7):1072-1081.
|
[4] |
LIU S D, ZHOU Z Y, ZOU R P, et al. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper[J]. Powder Technology, 2014, 253:70-79.
|
[5] |
ANAND A, CURTIS J S, WASSGREN C R, et al. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM)[J]. Chemical Engineering Science, 2008, 63(24):5821-5830.
|
[6] |
HÖHNER D, WIRTZ S, SCHERER V. A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method[J]. Powder Technology, 2012, 226:16-28.
|
[7] |
许鹏凯, 段学志, 钱刚, 等. 楔形中心和偏心料仓中壁面摩擦系数对卸料速率的影响[J]. 化工学报, 2015, 66(3):880-887. XU P K, DUAN X Z, QIAN G, et al. Granular discharge from concentric and eccentric wedge shaped hoppers:effect of wall friction coefficient on discharge rate[J]. CIESC Journal, 2015, 66(3):880-887.
|
[8] |
张西良, 张建, 李萍萍, 等. 粉体物料流动性仿真分析[J]. 农业机械学报, 2008, 39(8):196-198. ZHANG X L, ZHANG J, LI P P, et al. Simulation analysis for particle material flow[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8):196-198.
|
[9] |
JENIKE A W. Gravity flow of bulk solids, bulletin No. 108[J]. Bulletin of the University of Utah, 1961, 52(29):1-32.
|
[10] |
JENIKE A W. Storage and flow of solids, bulletin No. 123[J]. Bulletin of the University of Utah, 1964, 53(26):229-236.
|
[11] |
谭援强, 肖湘武, 郑军辉, 等. 锥形改流体下部孔径对筒仓卸料流态的影响[J]. 农业工程学报, 2016, 32(19):82-87. TAN Y Q, XIAO X W, ZHENG J H, et al. Effect of outlet diameter of cone-in-cone insert on silo flow pattern[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 32(19):82-87.
|
[12] |
谭援强, 郑军辉, 张浩, 等. 基于离散元法的锥形筒仓中颗粒流体的数学模拟[J]. 过程工程学报, 2015, 15(6):916-922. TAN Y Q, ZHENG J H, ZHANG H, et al. Mathematical simulation of granular fluid in conical silo based on discrete element method[J]. The Chinese Journal of Process Engineering, 2015, 15(6):916-922.
|
[13] |
GONZÁLEZ-MONTELLANO C, GALLEGO E, RAMÍREZ-GÓMEZ Á, et al. Three dimensional discrete element models for simulating the filling and emptying of silos:analysis of numerical results[J]. Computers & Chemical Engineering, 2012, 40(40):22-32.
|
[14] |
MAGALHÃES F G R, ATMAN A P F, MOREIRA J G, et al. Analysis of the velocity field of granular hopper flow[J]. Granular Matter, 2015, 18(2):1-7.
|
[15] |
WU J T, CHEN J Z, YANG Y R. Microscopic analysis of particle flow in moving bed[J]. Journal of Zhejiang University, 2006, 40(5):863-864.
|
[16] |
XU P, DUAN X, QIAN G, et al. Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper[J]. Powder Technology, 2015, 284:326-335.
|
[17] |
WANG P, ZHU L, ZHU X. Flow pattern and normal pressure distribution in flat bottom silo discharged using wall outlet[J]. Powder Technology, 2016, 295:104-114.
|
[18] |
GONZÁLEZ-MONTELLANO C, RAMÍREZ Á, GALLEGO E, et al. Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos[J]. Chemical Engineering Science, 2011, 66(21):5116-5126.
|
[19] |
KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A numerical study on the sensitivity of the discrete element method for hopper discharge[J]. Journal of Pressure Vessel Technology, 2009, 131(3):31211.
|
[20] |
KETTERHAGEN W R, CURTIS J S, WASSGREN C R, et al. Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers[J]. Powder Technology, 2008, 179(3):126-143.
|
[21] |
KETTERHAGEN W R, CURTIS J S, WASSGREN C R, et al. Predicting the flow mode from hoppers using the discrete element method[J]. Powder Technology, 2009, 195(1):1-10.
|
[22] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
|
[23] |
JOHNSON K L. Contact mechanics[J]. Journal of Tribology, 1985, 108(4):464.
|
[24] |
MINDLIN R D, DERESIEWICA H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20(3):327-344.
|
[25] |
中南大学. 一种多功能烟花亮珠造粒安全配料机构:2016214062845[P]. 2017-06-27. Central South University. A multi-functional fireworks beads granulation safety batching mechanism:2016214062845[P]. 2017-06-27.
|
[26] |
CHEN H, ZHAO X Q, XIAO Y G, et al. Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2):527-535.
|
[27] |
CHEN H, LIU Y L, ZHAO X Q, et al. Numerical investigation on angle of repose and force network from granular pile in variable gravitational environments[J]. Powder Technology, 2015, 283:607-617.
|
[28] |
陈辉, 肖友刚, 赵先琼, 等. 回转窑内二元颗粒物料的径向混合[J]. 工程科学学报, 2016, 38(2):194-199. CHEN H, XIAO Y G, ZHAO X Q, et al. Transverse mixing of binary solid materials in a rotating kiln[J]. Chinese Journal of Engineering, 2016, 38(2):194-199.
|
[29] |
FUNG W W S, KWAN A K H. Effect of particle interlock on flow of aggregate through opening[J]. Powder Technology, 2014, 253:198-206.
|
[30] |
陶贺, 钟文琪, 张勇, 等. 异形混合非球形颗粒在移动床中流动特性的数值模拟[J]. 科学通报, 2015, 60(27):2667-2675. TAO H, ZHONG W, ZHANG Y, et al. Numerical simulation of flow characteristics for non-spherical particle mixture flowing in moving bed[J]. Chinese Science Bulletin, 2015, 60(27):2667-2675.
|