CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 272-281.DOI: 10.11949/j.issn.0438-1157.20170847
Previous Articles Next Articles
WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian
Received:
2017-07-02
Revised:
2017-10-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170847
Supported by:
supported by the National Outstanding Youth Foundation of China(31622001) and the National Natural Science Foundation of China(31671845, 21676119).
武耀康, 刘延峰, 李江华, 堵国成, 刘龙, 陈坚
通讯作者:
陈坚
基金资助:
国家优秀青年科学基金项目(31622001);国家自然科学基金项目(31671845,21676119)。
CLC Number:
WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian. Dynamic regulation elements and their applications in microbial metabolic engineering[J]. CIESC Journal, 2018, 69(1): 272-281.
武耀康, 刘延峰, 李江华, 堵国成, 刘龙, 陈坚. 动态调控元件及其在微生物代谢工程中的应用[J]. 化工学报, 2018, 69(1): 272-281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170847
[1] | BAILEY J E. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013):1668-1675. |
[2] | STEPHANOPOULOS G, VALLINO J J. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013):1675-1681. |
[3] | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6):1185-1197. |
[4] | XIAO H, ZHONG J J. Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches[J]. Trends in Biotechnology, 2016, 34(3):242-255. |
[5] | LIU J, LI J, SHIN H D, et al. Protein and metabolic engineering for the production of organic acids[J]. Bioresource Technology, 2017, 239:412-421. |
[6] | JIANG Y, LIU J, JIANG W, et al. Current status and prospects of industrial bio-production of n-butanol in China[J]. Biotechnology Advances, 2015, 33(7):1493-1501. |
[7] | ROSENBERG J, ISCHEBECK T, COMMICHAU F M. Vitamin B6 metabolism in microbes and approaches for fermentative production[J]. Biotechnology Advances, 2017, 35(1):31-40. |
[8] | LIU L, LIU Y, SHIN H D, et al. Microbial production of glucosamine and N-acetylglucosamine:advances and perspectives[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6149-6158. |
[9] | KEASLING J D. Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3):189-195. |
[10] | LIU Y, SHIN H D, LI J, et al. Toward metabolic engineering in the context of system biology and synthetic biology:advances and prospects[J]. Applied Microbiology and Biotechnology, 2015, 99(3):1109-1118. |
[11] | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33(10):1061-1072. |
[12] | BOOCK J T, GUPTA A, PRATHER K. Screening and modular design for metabolic pathway optimization[J]. Current Opinion in Biotechnology, 2015, 36:189-198. |
[13] | LIU Y, ZHU Y, LI J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production[J]. Metabolic Engineering, 2014, 23:42-52. |
[14] | SIU K H, CHEN R P, SUN Q, et al. Synthetic scaffolds for pathway enhancement[J]. Current Opinion in Biotechnology, 2015, 36:98-106. |
[15] | LIU Y, ZHU Y, MA W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis[J]. Metabolic Engineering, 2014, 24:61-69. |
[16] | CHUBUKOV V, GEROSA L, KOCHANOWSKI K, et al. Coordination of microbial metabolism[J]. Nature Reviews Microbiology, 2014, 12(5):327-340. |
[17] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1):19-23. |
[18] | KOCHANOWSKI K, SAUER U, CHUBUKOV V. Somewhat in control-the role of transcription in regulating microbial metabolic fluxes[J]. Current Opinion in Biotechnology, 2013, 24(6):987-993. |
[19] | PARK J H, LEE K H, KIM T Y, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(19):7797-7802. |
[20] | WILLIAMS T C, ESPINOSA M I, NIELSEN L K, et al. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(1):1-10. |
[21] | SOMA Y, TSURUNO K, WADA M, et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch[J]. Metabolic Engineering, 2014, 23:175-184. |
[22] | FARMER W R, LIAO J C. Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5):533-537. |
[23] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nature Biotechnology, 2012, 30(4):354-359. |
[24] | XU P, LI L, ZHANG F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proc. Natl. Acad. Sci. USA, 2014, 111(31):11299-11304. |
[25] | LIBIS V, DELEPINE B, FAULON J L. Sensing new chemicals with bacterial transcription factors[J]. Current Opinion in Microbiology, 2016, 33:105-112. |
[26] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11):1039-1046. |
[27] | ISHⅡ T, YOSHIDA K I, TERAI G, et al. DBTBS:a database of Bacillus subtilis promoters and transcription factors[J]. Nucleic Acids Research, 2001, 29(1):278-280. |
[28] | ISHIHAMA A, SHIMADA T, YAMAZAKI Y. Transcription profile of Escherichia coli:genomic SELEX search for regulatory targets of transcription factors[J]. Nucleic Acids Research, 2016, 44(5):2058-2074. |
[29] | TEIXEIRA M C, MONTEIRO P, JAIN P, et al. The YEASTRACT database:a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2006, 34(suppl 1):D446-D451. |
[30] | WINKLER W, NAHVI A, BREAKER R R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910):952. |
[31] | NUDLER E, MIRONOV A S. The riboswitch control of bacterial metabolism[J]. Trends in Biochemical Sciences, 2004, 29(1):11-17. |
[32] | SERGANOV A, NUDLER E. A decade of riboswitches[J]. Cell, 2013, 152(1/2):17-24. |
[33] | SUDARSAN N, WICKISER J K, NAKAMURA S, et al. An mRNA structure in bacteria that controls gene expression by binding lysine[J]. Genes & Development, 2003, 17(21):2688-2697. |
[34] | ZHOU L B, ZENG A P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum[J]. ACS Synthtic Biology, 2015, 4(6):729-734. |
[35] | MANDAL M, LEE M, BARRICK J E, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression[J]. Science, 2004, 306(5694):275-279. |
[36] | MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55(1):165-199. |
[37] | SOMA Y, HANAI T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30:7-15. |
[38] | GUPTA A, REIZMAN I M B, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3):273-279. |
[39] | ZHOU L, NIU D D, TIAN K M, et al. Genetically switched D-lactate production in Escherichia coli[J]. Metabolic Engineering, 2012, 14(5):560-568. |
[40] | LI W, LI H X, JI S Y, et al. Characterization of two temperature-inducible promoters newly isolated from B. subtilis[J]. Biochemical and Biophysical Research Communications, 2007, 358(4):1148-1153. |
[41] | PANAHI R, VASHEGHANI-FARAHANI E, SHOJAOSADATI S A, et al. Induction of Bacillus subtilis expression system using environmental stresses and glucose starvation[J]. Annals of Microbiology, 2014, 64(2):879-882. |
[42] | OLIVA G, SAHR T, BUCHRIESER C. Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria:impact on metabolism and virulence[J]. FEMS Microbiology Reviews, 2015, 39(3):331-349. |
[43] | WATERS L S, STORZ G. Regulatory RNAs in bacteria[J]. Cell, 2009, 136(4):615-628. |
[44] | CARTHEW R W, SONTHEIMER E J. Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136(4):642-655. |
[45] | MANDAL M, BREAKER R R. Gene regulation by riboswitches[J]. Nature Reviews:Molecular Cell Biology, 2004, 5(6):451-463. |
[46] | CARON M P, BASTET L, LUSSIER A, et al. Dual-acting riboswitch control of translation initiation and mRNA decay[J]. Proceedings of the National Academy of Sciences, 2012, 109(50):E3444-E3453. |
[47] | ZHOU L B, ZENG A P. Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum[J]. ACS Synthtic Biology, 2015, 4(12):1335-1340. |
[48] | ROGERS J K, TAYLOR N D, CHURCH G M. Biosensor-based engineering of biosynthetic pathways[J]. Current Opinion in Biotechnology, 2016, 42:84-91. |
[49] | YANG J, SEO S W, JANG S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nature Communications, 2013, 4:1413. |
[50] | WINKLER W C, NAHVI A, ROTH A, et al. Control of gene expression by a natural metabolite-responsive ribozyme[J]. Nature, 2004, 428(6980):281-286. |
[51] | LEE S W, OH M K. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28:143-150. |
[52] | YANG P, WANG J, PANG Q, et al. Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor[J]. Metabolic Engineering, 2017, 43:21-28. |
[53] | THOMASON M K, STORZ G. Bacterial antisense RNAs:how many are there, and what are they doing?[J]. Annual Review of Genetics, 2010, 44:167-188. |
[54] | BRANTL S. Regulatory mechanisms employed by cis-encoded antisense RNAs[J]. Current Opinion in Biotechnology, 2007, 10(2):102-109. |
[55] | SOLOMON K V, SANDERS T M, PRATHER K L. A dynamic metabolite valve for the control of central carbon metabolism[J]. Metabolic Engineering, 2012, 14(6):661-671. |
[56] | NAKASHIMA N, TAMURA T, GOOD L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli[J]. Nucleic Acids Research, 2006, 34(20):e138. |
[57] | YANG Y, LIN Y, LI L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering, 2015, 29:217-226. |
[58] | STORZ G, VOGEL J, WASSARMAN K M. Regulation by small RNAs in bacteria:expanding frontiers[J]. Molecular Cell, 2011, 43(6):880-891. |
[59] | GOTTESMAN S. The small RNA regulators of Escherichia coli:roles and mechanisms[J]. Annual Review of Microbiology, 2004, 58:303-328. |
[60] | NA D, YOO S M, CHUNG H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs[J]. Nature Biotechnology, 2013, 31(2):170-174. |
[61] | QI L, LUCKS J B, LIU C C, et al. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals[J]. Nucleic Acids Research, 2012, 40(12):5775-5786. |
[62] | TOMARI Y, ZAMORE P D. Perspective:machines for RNAi[J]. Genes & Development, 2005, 19(5):517-529. |
[63] | WILLIAMS T, AVERESCH N, WINTER G, et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 29:124-134. |
[64] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. |
[65] | JINEK M, JIANG F, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. |
[66] | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183. |
[67] | DIDOVYK A, BOREK B, TSIMRING L, et al. Transcriptional regulation with CRISPR-Cas9:principles, advances, and applications[J]. Current Opinion in Biotechnology, 2016, 40:177-184. |
[68] | JUSIAK B, CLETO S, PEREZ-PINERA P, et al. Engineering synthetic gene circuits in living cells with CRISPR technology[J]. Trends in Biotechnology, 2016, 34(7):535-547. |
[69] | LI S, JENDRESEN C B, GRUNBERGER A, et al. Enhanced protein and biochemical production using CRISPRi-based growth switches[J]. Metabolic Engineering, 2016, 38:274-284. |
[70] | ZALATAN J G, LEE M E, ALMEIDA R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2):339-350. |
[71] | RICHTER F, FONFARA I, GELFERT R, et al. Switchable Cas9[J]. Current Opinion in Biotechnology, 2017, 48:119-126. |
[72] | RICHTER F, FONFARA I, BOUAZZA B, et al. Engineering of temperature-and light-switchable Cas9 variants[J]. Nucleic Acids Research, 2016, 44(20):10003-10014. |
[73] | MOTLAGH H N, WRABL J O, LI J, et al. The ensemble nature of allostery[J]. Nature, 2014, 508(7496):331-339. |
[74] | CHEN Z, RAPPERT S, ZENG A P. Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine[J]. ACS Synthtic Biology, 2015, 4(2):126-131. |
[75] | JANSSEN B D, HAYES C S. The tmRNA ribosome-rescue system[J]. Advances in Protein Chemistry & Structural Biology, 2012, 86:151-191. |
[76] | BROCKMAN I M, PRATHER K L. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites[J]. Metabolic Engineering, 2015, 28:104-113. |
[77] | TORELLA J P, FORD T J, KIM S N, et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(28):11290-11295. |
[78] | CAMERON D E, COLLINS J J. Tunable protein degradation in bacteria[J]. Nature Biotechnology, 2014, 32(12):1276-1281. |
[79] | GUIZIOU S, SAUVEPLANE V, CHANG H J, et al. A part toolbox to tune genetic expression in Bacillus subtilis[J]. Nucleic Acids Research, 2016, 44(15):7495-7508. |
[1] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[2] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[3] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[4] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[5] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[6] | Xiaosong HOU, Chenxing LIU, Ailing REN, Bin GUO, Yuanming GUO. Study on purification of toluene waste gas by ultrasonic atomization/surfactants-enhanced absorption coupled with biological scrubbing [J]. CIESC Journal, 2022, 73(10): 4692-4706. |
[7] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[8] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
[9] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[10] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[11] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[12] | Nan SU, Yinan WU, Yinyee TAN, Lihua JIN, Chong ZHANG, Aikawa SHIMPEI, Hasunuma TOMOHISA, Kondo AKIHIKO, Xinhui XING. Comparative omics study of Spirulinaplatensis mutants based on ARTP mutagenesis breeding system [J]. CIESC Journal, 2021, 72(12): 6298-6310. |
[13] | Xiaojing ZHANG,Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO. Comparison of the performance of Anammox process in the treatment of wastewater from different antibiotics [J]. CIESC Journal, 2021, 72(11): 5810-5819. |
[14] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
[15] | WANG Lian, WU Di, ZHOU Jingwen. Research progress of lignans biosynthesis and their microbial production [J]. CIESC Journal, 2021, 72(1): 320-333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||