CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 259-271.DOI: 10.11949/j.issn.0438-1157.20170964
Previous Articles Next Articles
ZHU Chenjie, FU Jingwen, TAN Zhuotao, YING Hanjie
Received:
2017-07-25
Revised:
2017-09-11
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170964
Supported by:
supported by the National Natural Science Foundation of China (21776132, 21406110, 21390204), Jiangsu Province Natural Science Foundation for Youths (BK20140938) and Young Elite Scientist Sponsorship Program by CAST.
朱晨杰, 付静雯, 谭卓涛, 应汉杰
通讯作者:
应汉杰
基金资助:
国家自然科学基金项目(21776132,21406110,21390204);江苏省自然科学基金项目(BK20140938);“青年人才托举工程”项目。
CLC Number:
ZHU Chenjie, FU Jingwen, TAN Zhuotao, YING Hanjie. Advances in regeneration system of natural nicotinamide cofactor and its artificial analogues[J]. CIESC Journal, 2018, 69(1): 259-271.
朱晨杰, 付静雯, 谭卓涛, 应汉杰. 天然烟酰胺辅因子再生体系及其人工类似物研究进展[J]. 化工学报, 2018, 69(1): 259-271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170964
[1] | KARA S, SCHRITTWIESER J H, HOLLMANN F, et al. Recent trends and novel concepts in cofactor-dependent biotransformations[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1517-1529. |
[2] | WU H, TIAN C, SONG X, et al. Methods for the regeneration of nicotinamide coenzymes[J]. Green Chemistry, 2013, 15(7):1773. |
[3] | 蔡谨, 杨晟, 许建和, 等. 辅因子再生研究进展[J]. 生物加工过程, 2005, 3(2):1-8. CAI J, YANG S, XU J H, et al. Progresses on cofactor regeneration[J]. Chinese Journal of Bioprocess Engineering, 2005, 3(2):1-8. |
[4] | 吕陈秋, 姜忠义, 王姣. 烟酰型辅酶NAD(P)+和NAD(P)H再生的研究进展[J]. 有机化学, 2004, 24(11):1366-1379. LÜ C Q, JIANG Z Y, WANG J. Progress in regeneration of NAD(P)+ and NAD(P)H[J]. Chinese Journal of Organic Chemistry, 2004, 24(11):1366-1379. |
[5] | 江金鹏, 吴旭日, 陈依军. 解决氧化还原酶反应体系中辅酶问题的策略及其应用[D]. 生物工程学报, 2012, 28(4):410-419. JIANG J P, WU X R, CHEN Y J. Strategy to solve cofactor issues in oxidoreductase catalyzed biocatalytic applications[J]. Chinese Journal of Biotechnology, 2012, 28(4):410-419. |
[6] | WICHMANN R, VASIC-RACKI D. Cofactor regeneration at the lab scale[J]. Advances in Biochemical Engineering, 2005, 92:225-260. |
[7] | HUMMEL W, KULA M R. Dehydrogenases for the synthesis of chiral compounds[J]. The FEBS Journal, 1989, 184(1):1-13. |
[8] | MATSUDA T, YAMAGISHI Y, KOGUCHI S. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum[J]. Tetrahedron Letters, 2006, 47(27):4619-4622. |
[9] | WECKBECKER A. Regeneration of nicotinamide coenzymes:principles and applications for the synthesis of chiral compounds[M]//ANDREA H G, WERNER HUMMEL. Biosystems Engineering Ⅰ. Heidelberg, Berlin:Springer-Verlag 2010:195-242. |
[10] | HOLLMANN F, ARENDS I W C E, HOLTMANN D. Enzymatic reductions for the chemist[J]. Green Chemistry, 2011, 13(9):2285. |
[11] | MERTENS R, GREINER L, VAN DEN BAN E C D, et al. Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration[J]. Journal of Molecular Catalysis B:Enzymatic, 2003, 24:39-52. |
[12] | YAMAMOTO H, MITSUHASHI K, KIMOTO N. A novel NADH-dependent carbonyl reductase from Kluyveromyces aestuarii and comparison of NADH-regeneration system for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(3):638-649. |
[13] | COSGROVE M S, NAYLOR C, PALUDAN S. On the mechanism of the reaction catalyzed by glucose 6-phosphate dehydrogenase[J]. Biochemistry, 1998, 37(9):2759-2767. |
[14] | SMITH L D, BUDGEN N, BUNGARD S J. Purification and characterization of glucose dehydrogenase from the Thermoplasma acidophilum[J]. Biochemical Journal, 1989, 261(3):973-977. |
[15] | ADOLPH H W, MAURER P, SCHNEIDER-BERNLÖHR H. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase[J]. The FEBS Journal, 1991, 201(3):615-625. |
[16] | VAN IERSEL M F, EPPINK M H, VAN BERKEL W J. Purification and characterization of a novel NADP-dependent branched-chain alcohol dehydrogenase from Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 1997, 63(10):4079-4082. |
[17] | PEITZNER J, LINKE H A B, SCHLEGEL H G. Eigenschaften der NAD-spezifischen hydrogenase aus hydrogenomonas H 16[J]. Archiv für Mikrobiologie, 1970, 71(1):67-78. |
[18] | WOODYER R, VAN DER DONK W A, ZHAO H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design[J]. Biochemistry, 2003, 42(40):11604-11614. |
[19] | HUMMEL W, RIEBEL B. Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis[J]. Biotechnology Letters, 2003, 25(1):51-54. |
[20] | RIEBEL B R, GIBBS P R, WELLBORN W B. Cofactor regeneration of NAD+ from NADH:novel water-forming NADH oxidases[J]. Advanced Synthesis & Catalysis, 2002, 344(10):1156-1168. |
[21] | ANGELASTRO A, DAWSON W M, LUK L Y P, et al. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover number[J]. ACS Catalysis, 2017, 7(2):1025-1029. |
[22] | LEE L G, WHITESIDES G M. Preparation of optically active 1,2-diols and α-hydroxy ketones using glycerol dehydrogenase as catalyst:limits to enzyme-catalyzed synthesis due to noncompetitive and mixed inhibition by product.[J]. The Journal of Organic Chemistry, 1986, 51(25):25-36. |
[23] | CARREA G, BOVARA R, CREMONESI P. Enzymatic preparation of 12-ketochenodeoxycholic acid with NADP regeneration[J]. Biotechnology and Bioengineering, 1984, 26(5):560-563. |
[24] | PETERSON P E, PIERCE J, SMITH T J. Crystallization and characterization of bovine liver glutamate dehydrogenase[J]. Journal of Structural Biology, 1997, 120(1):73-77. |
[25] | GARVIE E I. Bacterial lactate dehydrogenases[J]. Microbiological Reviews, 1980, 44(1):106-139. |
[26] | PARK H J, KREUTZER R, REISER C O A. Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli[J]. The FEBS Journal, 1992, 205(3):875-879. |
[27] | GOLDBERG K, SCHROER K, LUETZ S, et al. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols(Ⅰ):Processes with isolated enzymes[J]. Applied Microbiology and Biotechnology, 2007, 76(2):237-248. |
[28] | HOLLMANN F, WITHOLT B, SCHMID A.[Cp*Rh(bpy)(H2O)]2+:a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes[J]. Journal of Molecular Catalysis B:Enzymatic, 2002, 19:167-176. |
[29] | HOLLMANN F, HOFSTETTER K, SCHMID A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis[J]. Trends in Biotechnology, 2006, 24(4):163-171. |
[30] | SOLDEVILA-BARREDA J J, BRUIJNINCX P C A, HABTEMARIAM A, et al. Improved catalytic activity of ruthenium-arene complexes in the reduction of NAD+[J]. Organometallics, 2012, 31(16):5958-5967. |
[31] | MAENAKA Y, SUENOBU T, FUKUZUMI S. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a[C,N] and a[C,C] cyclometalated organoiridium complex at room temperature in water[J]. Journal of the American Chemical Society, 2012, 134(22):9417-9427. |
[32] | MAENAKA Y, SUENOBU T, FUKUZUMI S. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature[J]. Journal of the American Chemical Society, 2011, 134(1):367-374. |
[33] | RUPPERT R, HERRMANN S, STECKHAN E. Very efficient reduction of NAD(P)+ with formate catalysed by cationic rhodium complexes[J]. Chemical Communications, 1988, (17):1150-1151. |
[34] | CANIVET J, SÜSS-FINK G, ŠTěPNI?KA P. Water-soluble phenanthroline complexes of rhodium, iridium and ruthenium for the regeneration of NADH in the enzymatic reduction of ketones[J]. European Journal of Inorganic Chemistry, 2007, 2007(30):4736-4742. |
[35] | HAQUETTE P, TALBI B, BARILLEAU L, et al. Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration[J]. Organic & Biomolecular Chemistry, 2011, 9(16):5720-5727. |
[36] | HILT G, LEWALL B, MONTERO G. Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts[J]. European Journal of Organic Chemistry, 1997, 1997(11):2289-2296. |
[37] | JEE J E, EIGLER S, JUX N. Influence of an extremely negatively charged porphyrin on the reversible binding kinetics of NO to Fe(Ⅲ) and the subsequent reductive nitrosylation[J]. Inorganic Chemistry, 2007, 46(8):3336-3352. |
[38] | MAID H, BOHM P, HUBER S M, et al. Iron catalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen:a synthetic metalloporphyrin as a biomimetic NAD(P)H oxidase[J]. Angewandte Chemie, International Edition, 2011, 50(10):2397-2400. |
[39] | JONES J B, TAYLOR K E. Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols[J]. Journal of the Chemical Society, Chemical Communications, 1973, (6):205-206. |
[40] | GARGIULO S, ARENDS I W C E, HOLLMANN F. A photoenzymatic system for alcohol oxidation[J]. ChemCatChem, 2011, 3(2):338-342. |
[41] | ZHU C J, LI Q, PU L L, et al. Nonenzymatic and metal-free organocatalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen[J]. ACS Catalysis, 2016, 6(8):4989-4994. |
[42] | DAMIAN A, OMANOVIC S. Electrochemical reduction of NAD+ on a polycrystalline gold electrode[J]. Journal of Molecular Catalysis A:Chemical, 2006, 253(1):222-233. |
[43] | RAMíREZ-MOLINA C, BOUJTITA M. New strategy for dehydrogenase amperometric biosensors using surfactant to enhance the sensitivity of diaphorase/ferrocene modified carbon paste electrodes for electrocatalytic oxidation of NADH[J]. Electroanalysis, 2003, 15(13):1095-1100. |
[44] | ZHENG H, OHNO Y, NAKAMORI T. Production of L-malic acid with fixation of HCO3- by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method[J]. Journal of Bioscience and Bioengineering, 2009, 107(1):16-20. |
[45] | YUAN R, WATANABE S, KUWABATA S. Asymmetric electroreduction of ketone and aldehyde derivatives to the corresponding alcohols using alcohol dehydrogenase as an electrocatalyst[J]. The Journal of Organic Chemistry, 1997, 62(8):2494-2499. |
[46] | SCHULZ M, LEICHMANN H, GÜNTHER H. Electromicrobial regeneration of pyridine nucleotides and other preparative redox transformations with Clostridium thermoaceticum[J]. Applied microbiology and biotechnology, 1995, 42(6):916-922. |
[47] | SALIMI A, IZADI M, HALLAJ R. Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(Ⅲ) complexes[J]. Journal of Solid State Electrochemistry, 2009, 13(3):485-496. |
[48] | CHEIKHOU K, TZÉDAKIS T. Electrochemical microreactor for chiral syntheses using the cofactor NADH[J]. AIChE Journal, 2008, 54(5):1365-1376. |
[49] | KANG H S, NA B K, PARK D H. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH[J]. Biotechnology Letters, 2007, 29(8):1277-1280. |
[50] | HILDEBRAND F, KOHLMANN C, FRANZ A. Synthesis, characterization and application of new rhodium complexes for indirect electrochemical cofactor regeneration[J]. Advanced Synthesis & Catalysis, 2008, 350(6):909-918. |
[51] | ZHANG L, VILÀ N, KOHRING G W, et al. Covalent immobilization of (2,2'-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration[J]. ACS Catalysis, 2017, 7(7):4386-4394. |
[52] | CANTET J, BERGEL A, COMTAT M. Coupling of the electroenzymatic reduction of NAD+ with a synthesis reaction[J]. Enzyme and Microbial Technology, 1996, 18(1):72-79. |
[53] | LI Z, VAN BEILEN J B, DUETZ W A, et al. Oxidative biotransformations using oxygenases[J]. Current Opinion in Chemical Biology, 2002, 6(2):136-144. |
[54] | RAHMAN G, LIM J Y, JUNG K D, et al. Electrodeposited Ru nanoparticles for electrochemical reduction of NAD+ to NADH[J]. International Journal of Electrochemical Science, 2011, 6(7):2789-2797. |
[55] | HILT G, JARBAWI T, HEINEMAN W R. An analytical study of the redox behavior of 1,10-phenanthroline-5,6-dione, its transition-metal complexes, and its N-monomethylated derivative with regard to their efficiency as mediators of NAD(P)+ regeneration[J]. Chemistry-A European Journal, 1997, 3(1):79-88. |
[56] | WILLNER I, YAN Y M, WILLNER B, et al. Integrated enzyme-based biofuel cells-a review[J]. Fuel Cells, 2009, 9(1):7-24. |
[57] | SCHRÖDER I, STECKHAN E, LIESE A. In situ NAD+ regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator[J]. Journal of Electroanalytical Chemistry, 2003, 541:109-115. |
[58] | KIM Y, IKEBUKURO K, MUGURUMA H, et al. Photogeneration of NADPH by oligothiophenes coupled with ferredoxin-NADP reductase[J]. Journal of Biotechnology, 1998, 59(3):213-220. |
[59] | BRUNE A, JEONG G, LIDDELL P A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20(19):8366-8371. |
[60] | KIM J H, LEE S H, LEE J S, et al. Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis[J]. Chemical Communications, 2011, 47(37):10227-10229. |
[61] | RICKUS J L, CHANG P L, TOBIN A J, et al. Photochemical coenzyme regeneration in an enzymatically active optical material[J]. The Journal of Physical Chemistry B, 2004, 108(26):9325-9332. |
[62] | DILGIN Y, GORTON L, NISLI G. Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O[J]. Electroanalysis, 2007, 19(2/3):286-293. |
[63] | PARK C B, LEE S H, SUBRAMANIAN E, et al. Solar energy in production of L-glutamate through visible light active photocatalyst-redox enzyme coupled bioreactor[J]. Chemical Communications, 2008, (42):5423-5425. |
[64] | CHEN D, YANG D, WANG Q, et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J]. Industrial & Engineering Chemistry Research, 2006, 45(12):4110-4116. |
[65] | RYU J, LEE S H, NAM D H, et al. Rational design and engineering of quantum-dot-sensitized TiO2 nanotube arrays for artificial photosynthesis[J]. Advanced Materials, 2011, 23(16):1883-1888. |
[66] | JIANG Z, LÜ C, WU H. Photoregeneration of NADH using carbon-containing TiO2[J]. Industrial & Engineering Chemistry Research, 2005, 44(12):4165-4170. |
[67] | SHI Q, YANG D, JIANG Z, et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis B:Enzymatic, 2006, 43(1):44-48. |
[68] | KIM J H, LEE M, LEE J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis[J]. Angewandte Chemie International Edition, 2012, 51(2):517-520. |
[69] | KARRER P, OTTO W. Jodmethylat des nicotinsäureamids[J]. Biochem Ztschr, 1936, 285(May 12):297-298. |
[70] | KARRER P, STARE F. N-Alkyl-o-dihydro-nicotinsäure-amide[J]. Helvetica Chimica Acta, 1937, 20(1):418-423. |
[71] | MAUZERALL D, WESTHEIMER F H. 1-Benzyldihydro-nicotinamide-a model for reduced DPN[J]. Journal of the American Chemical Society, 1955, 77(8):2261-2264. |
[72] | WALTER P, KAPLAN N. Substituted nicotinamide analogues of nicotinamide adenine dinucleotide[J]. Journal of Biological Chemistry, 1963, 238(8):2823-2830. |
[73] | KAPLAN N O, CIOTTI M M, STOLZENBACH F E. Reaction of pyridine nucleotide analogues with dehydrogenases[J]. Journal of Biological Chemistry, 1956, 221(2):833-844. |
[74] | KAPLAN N O, CIOTTI M M. Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide[J]. Journal of Biological Chemistry, 1956, 221(2):823-832. |
[75] | KAPLAN N O, STOLZENBACH F E. Preparation of DPN derivatives and analogs[J]. Methods in Enzymology, 1957, 3:899-905. |
[76] | FAWCETT C P, KAPLAN N O. Preparation and properties of some nicotinamide adenine dinucleotide analogues with pentose and purine modifications[J]. The Journal of Biological Chemistry, 1962, 237:1709-1715. |
[77] | PAUL C E, ARENDS I W C E, HOLLMANN F. Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry[J]. ACS Catalysis, 2014, 4(3):788-797. |
[78] | DU W, YU Z. Biomimetic in situ regeneration of cofactors NAD(P)+ and NAD(P)H models hantzsch esters and dihydrophenanthridine[J]. Synlett, 2012, 23:1300-1304. |
[79] | JONES J B, TAYLOR K E. Nicotinamide coenzyme regeneration. Flavin mononucleotide (riboflavin phosphate) as an efficient, economical, and enzyme-compatible recycling agent[J]. Canadian Journal of Chemistry, 1976, 54(19):2969-2973. |
[80] | JONES J B, TAYLOR K E. Nicotinamide coenzyme regeneration. The rates of some 1,4-dihydropyridine, pyridinium salt, and flavin mononucleotide hydrogen-transfer reactions[J]. Canadian Journal of Chemistry, 1976, 54(19):2974-2980. |
[81] | ANDERSON B M, CIOTTI C J, KAPLAN N O. Chemical properties of 3-substituted pyridine analogues of diphosphopyridine nucleotide[J]. The Journal of Biological Chemistry, 1959, 234(5):1219-1225. |
[82] | KAZLAUSKAS R J. Changing coenzymes improves oxidations catalyzed by alcohol dehydrogenase[J]. Journal of Organic Chemistry, 1988, 53(19):4633-4635. |
[83] | FRIEDLOS F, JARMAN M, DAVIES L C, et al. Identification of novel reduced pyridinium derivatives as synthetic co-factors for the enzyme DT diaphorase (NAD(P)H dehydrogenase (quinone), EC 1.6.99.2)[J]. Biochemical Pharmacology, 1992, 44(1):25-31. |
[84] | LUTZ J, HOLLMANN F, HO T V, et al. Bioorganometallic chemistry:biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and[Cp*Rh(bpy)H]+ for selective organic synthesis[J]. Journal of Organometallic Chemistry, 2004, 689(25):4783-4790. |
[85] | RYAN J D, FISH R H, CLARK D S. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors[J]. ChemBioChem, 2008, 9(16):2579-2582. |
[86] | QI J, PAUL C E, HOLLMANN F, et al. Changing the electron donor improves azoreductase dye degrading activity at neutral pH[J]. Enzyme and Microbial Technology, 2017, 100:17-19. |
[87] | PAUL C E, GARGIULO S, OPPERMAN D J, et al. Mimicking nature:synthetic nicotinamide cofactors for C C bioreduction using enoate reductases[J]. Organic Letters, 2012, 15(1):180-183. |
[88] | ZHANG L, YUAN J, XU Y, et al. New artificial fluoro-cofactor of hydride transfer with novel fluorescence assay for redox biocatalysis[J]. Chemical Communications, 2016, 52(38):6471-6474. |
[89] | LÖW S A, LÖW I M, WEISSENBORN M J, et al. Enhanced ene-reductase activity through alteration of artificial nicotinamide cofactor substituents[J]. ChemCatChem, 2016, 8(5):911-915. |
[90] | STOCKWELL B R. Exploring biology with small organic molecules[J]. Nature, 2004, 432(7019):846-854. |
[91] | 侯淑华, 曲忠国, 钟克利, 等. 烟酰胺腺嘌呤二核苷酸(NAD+)类似物的合成及与NAD+依赖型酶相互作用进展[J]. 有机化学, 2015, 36(2):297-305. HOU S H, QU Z G, ZHONG K L, et al. Recent advances in nicotinamide adenine dinucluotide (NAD+) analogs synthesis and their interactions with NAD+-dependent enzymes[J]. Chinese Journal of Organic Chemistry, 2016, 36(2):297-305. |
[92] | 侯淑华, 刘武军, 赵宗保. 新型烟酰胺腺嘌呤二核苷酸(NAD)类似物的合成及其辅酶活性[J]. 有机化学, 2012, 32(2):349-353. HOU S H, LIU W J, ZHAO Z B. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities[J]. Chinese Journal of Organic Chemistry, 2012, 32(2):349-353. |
[93] | LIU W, WU S, HOU S, et al. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs[J]. Tetrahedron, 2009, 65(40):8378-8383. |
[94] | JI D, WANG L, HOU S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide[J]. Journal of the American Chemical Society, 2011, 133(51):20857-20862. |
[95] | JI D, WANG L, LIU W, et al. Synthesis of NAD analogs to develop bioorthogonal redox system[J]. Science China Chemistry, 2012, 56(3):296-300. |
[96] | PAUL C E, HOLLMANN F. A survey of synthetic nicotinamide cofactors in enzymatic processes[J]. Applied Microbiology and Biotechnology, 2016, 100(11):4773-4778. |
[97] | LO H C, BURIEZ O, KERR J B, et al. Regioselective reduction of NAD+ models with[Cp*Rh(bpy)H]+ structure-activity relationships and mechanistic aspects in the formation of the 1,4-NADH derivatives[J]. Angewandte Chemie, International Edition, 1999, 38(10):1429-1432. |
[98] | NOWAK C, BEER B, PICK A, et al. A water-forming NADH oxidase from Lactobacillus pentosus suitable for the regeneration of synthetic biomimetic cofactors[J]. Frontiers in Microbiology, 2015, 6:957. |
[99] | CHEN Q A, CHEN M W, YU C B, et al. Biomimetic asymmetric hydrogenation:in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones[J]. Journal of the American Chemical Society, 2011, 133(41):16432-16435. |
[100] | CHEN Q A, GAO K, DUAN Y, et al. Dihydrophenanthridine:a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation[J]. Journal of the American Chemical Society, 2012, 134(4):2442-2448. |
[101] | DUPAS G, LEVACHER V, BOURGUIGNON J. Chiral NADH models derived from optically active amino alcohols[J]. Heterocycles, 1994, 1(39):405-429. |
[102] | EL-SHERBENY M A, AL-SALEM H S, SULTAN M A, et al. Synthesis, in vitro and in vivo evaluation of a delivery system for targeting anticancer drugs to the brain[J]. Archiv der Pharmazie (Weinheim, Germany), 2003, 336(10):445-455. |
[103] | HAYNES R K, CHEU K W, CHAN H W, et al. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model-a unifying proposal for drug action[J]. ChemMedChem, 2012, 7(12):2204-2226. |
[104] | FRANCHETTI P, PETRELLI R, CAPPELLACCI L. Synthesis and biological evaluation of NAD analogs as human pyridine nucleotide adenylyltransferase inhibitors[J]. Nucleotides and Nucleic Acids, 2005, 24(5/6/7):477-479. |
[105] | KNOX R J, JENKINS T C, HOBBS S M. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitro-benzamide (CB 1954) by human NAD(P)H quinone oxidoreductase(2):A novel co-substrate-mediated antitumor prodrug therapy[J]. Cancer Research, 2000, 60(15):4179-4186. |
[106] | WALLRODT S, BUNTZ A, WANG Y, et al. Bioorthogonally functionalized NAD+ analogues for in-cell visualization of poly(ADP-ribose) formation[J]. Angewandte Chemie, International Edition, 2016, 55(27):7660-7664. |
[107] | CLAUDIA N, ANDRE P, PETRA L, et al. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase:providing a regeneration system for artificial cofactors[J]. ACS Catalysis, 2017, 7(8):5202-5208. |
[108] | WANG L, JI D, LIU Y, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer[J]. ACS Catalysis, 2017, 7(3):1977-1983. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||