[1] |
周乐, 宋执环, 侯北平, 等. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3):1109-1115. ZHOU L, SONG Z H, HOU B P, et al. Robust semi-supervised modeling method and its application to fault detection in chemical processes[J]. CIESC Journal, 2017, 68(3):1109-1115.
|
[2] |
ZHAO C H, WANG W, QIN Y, et al. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(12):3154-3166.
|
[3] |
GE Z Q, SONG Z H. A distribution-free method for process monitoring[J]. Expert Systems with Applications, 2011, 38(8):9821-9829.
|
[4] |
郑文静, 李绍军, 蒋达. D-vine copulas混合模型及其在故障检测中的应用[J]. 化工学报, 2017, 68(7):2851-2858. ZHENG W J, LI S J, JIANG D. Mixture of D-vine copulas model and its application in fault detection[J]. CIESC Journal, 2017, 68(7):2851-2858.
|
[5] |
GE Z Q, ZHANG M G, SONG Z H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5):676-688.
|
[6] |
GE Z Q, GAO F R, SONG Z H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes[J]. Chemical Engineering Science, 2011, 66(21):5173-5183.
|
[7] |
YAN Z B, HUANG B L, YAO Y. Multivariate statistical process monitoring of batch-to-batch startups[J]. AIChE Journal, 2015, 61(11):3719-3727.
|
[8] |
YAN Z B, CHEN C Y, YAO Y, et al. Robust multivariate statistical process monitoring via stable principal component pursuit[J]. Industrial & Engineering Chemistry Research, 2016, 55(14):4011-4021.
|
[9] |
CHEN T, ZHANG J. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model[J]. Computers and Chemical Engineering, 2010, 34(4):500-507.
|
[10] |
WANG L, SHI H B. Multivariate statistical process monitoring using an improved independent component analysis[J]. Chemical Engineering Research and Design, 2010, 88(4):403-414.
|
[11] |
TONG C D, YAN X F. A novel decentralized process monitoring scheme using a modified multiblock PCA algorithm[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):1129-1138.
|
[12] |
LIU Q, QIN S J, CHAI T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11):6429-6437.
|
[13] |
HSU C C, CHEN M C, CHEN L S. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring[J]. Expert Systems with Applications, 2010, 37(4):3264-3273.
|
[14] |
王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. Fault detection method based on variable sub-region PCA[J]. CIESC Journal, 2016, 67(10):4300-4308.
|
[15] |
WOLD S. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978, 20(4):397-405.
|
[16] |
QIN S J, RICARDO D. Determining the number of principal components for best reconstruction[J]. Journal of Process Control, 2000, 10(2):245-250.
|
[17] |
TOGKALIDOU T, BRAATZ R D, JOHNSON B K, et al. Experimental design and inferential modelling in pharmaceutical crystallization[J]. AIChE Journal, 2001, 47(1):160-168.
|
[18] |
LI L J, LIU S G, PENG Y L, et al. Overview of principal component analysis algorithm[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(9):3935-3944.
|
[19] |
HAMADACHE M, LEE D. Principal component analysis based signal-to-noise ratio improvement for inchoate faulty signals:application to ball bearing fault detection[J]. International Journal of Control, Automation and Systems, 2017, 15(2):506-517.
|
[20] |
SONG B, MA Y X, SHI H B. Improved performance of process monitoring based on selection of key principal components[J]. Chinese Journal of Chemical Engineering, 2015, 23(12):1951-1957.
|
[21] |
FEI Z S, LIU K L. Online process monitoring for complex systems with dynamic weighted principal component analysis[J]. Chinese Journal of Chemical Engineering, 2016, 24(6):775-786.
|
[22] |
JIANG Q C, YAN X F, HUANG B. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1):377-386.
|
[23] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
|
[24] |
YANG Y W, MA Y X, SONG B, et al. An aligned mixture probabilistic principal component analysis for fault detection of multimode chemical processes[J]. Chinese Journal of Chemical Engineering, 2015, 23(8):1357-1363.
|
[25] |
ZENG J, LIU K L, HUANG W P, et al. Sparse probabilistic principal component analysis model for plant-wide process monitoring[J]. Korean Journal of Chemical Engineering, 2017, 34(8):2135-2146.
|
[26] |
ZHONG N, DENG X G. Multimode non-Gaussian process monitoring based on local entropy independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2017, 95(2):319-330.
|
[27] |
WANG G Z, LIU J C, LI Y, et al. Fault diagnosis of chemical processes based on partitioning PCA and variable reasoning strategy[J]. Chinese Journal of Chemical Engineering, 2016, 24(7):869-880.
|
[28] |
SONG B, SHI H B, MA Y X, et al. Multisubspace principal component analysis with local outlier factor for multimode process monitoring[J]. Industrial & Engineering Chemistry Research, 2014, 53(42):16453-16464.
|
[29] |
LUO L J, BAO S Y, MAO J F, et al. Nonlinear process monitoring using data-dependent kernel global-local preserving projections[J]. Industrial & Engineering Chemistry Research, 2015, 54(44):11126-11138.
|