[1] |
DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2):153-162.
|
[2] |
MOALLEM P, MONADJEMI S A. An efficient MLP-learning algorithm using parallel tangent gradient and improved adaptive learning rates[J]. Connection Science, 2010, 22(4):373-392.
|
[3] |
刘菲菲, 彭荻, 贺彦林, 等. 基于极限学习机的过程神经网络研究及化工应用[J]. 上海交通大学学报, 2014, 48(7):977-981. LIU F F, PENG D, he Y L, et al. Research and chemical application of extreme learning based process neural network[J]. Journal of Shanghai Jiao Tong University, 2014, 48(7):977-981.
|
[4] |
HE Y L, ZHU Q X. A novel robust regression model based on functional link least square (FLLS) and its application to modeling complex chemical processes[J]. Chemical Engineering Science, 2016, 153:117-128.
|
[5] |
耿志强, 武开英, 韩永明. 基于层次分析的FLNN神经网络研究及应用[J]. 化工学报, 2016, 67(3):805-811. GENG Z Q, WU K Y, HAN Y M. Research and application of FLNN neural network based on AHP[J]. CIESC Journal, 2016, 67(3):805-811.
|
[6] |
MISHRA S K, PANDA G, MEHER S, et al. Exponential functional link artificial neural networks for denoising of image corrupted by Gaussian noise[C]//Proceedings of the 2009 International Conference on Advanced Computer Control. Washington DC, USA:IEEE Computer Society, 2009:355-359.
|
[7] |
MAJHI R, PANDA G, SAHOO G. Development and performance evaluation of FLANN based model for forecasting of stock markets[J]. Expert Systems with Applications:an International Journal, 2009, 36(3):6800-6808.
|
[8] |
HUANG S L, HAO K S, ZHAO W. New improved FLANN approach for dynamic modelling of sensors[J]. International Journal of Computer Applications in Technology, 2011, 41(1/2):4-10.
|
[9] |
ZHU B, CHEN Z S, HE Y L, et al. A novel nonlinear functional expansion based PLS (FEPLS) and its soft sensor application[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 161:108-117.
|
[10] |
何晓群. 多元统计分析[M]. 北京:中国人民大学出版社, 2012:135. HE X Q. Multivariate Statistical Analysis[M]. Beijing:China Renmin University Press, 2012:135.
|
[11] |
LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernal principal component analysis[J]. Chem. Eng. Sci., 2004, 59(1):223-234
|
[12] |
CHEN Y. Reference-related component analysis:a new method inheriting the advantages of PLS and PCA for separating interesting information and reducing data dimension[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 156:196-202.
|
[13] |
LU N, YAO Y, GAO F, et al. Two-dimensional dynamic PCA for batch process monitoring[J]. AIChE J., 2005, 51(12):3300-3304.
|
[14] |
SONG S O, SHIN D, YOON E S. Analysis of abnormality detection properties of nonlinear PCA methods[J]. IFAC Proceedings Volumes, 2001, 34(27):309-314.
|
[15] |
MOORE B. Principal component analysis in linear systems:controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1):17-32.
|
[16] |
JACKSON J E, MUDHOLKAR G S. Control procedures for residuals associated with principal component analysis[J]. Technometrics, 1979, 21 (3):341-349.
|
[17] |
YUAN Y B, WANGY Y G, CAO F L. Optimization approximation solution for regression problem based on extreme learning machine[J]. Neurocomputing, 2011, 74(16):2475-2482.
|
[18] |
LI C F, DAI Y Y, ZHAO J J, et al. Remote sensing monitoring of volcanic ash clouds based on PCA method[J]. Acta Geophysica, 2015:432-450.
|
[19] |
PENG D Z, ZHANG Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Transactions on Networks, 2007, 18(6):1777-1784.
|
[20] |
ZHANG L, DONG W, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010, 43(4):1531-1549.
|
[21] |
LIANG N Y, HUANG G B. A fast and accurate online sequential learning algorithm for feed-forward networks[J]. IEEE Transactions on Networks, 2006, 17(6):1411-1423.
|
[22] |
朱志洁, 张宏伟, 韩军, 等. 基于PCA-BP神经网络的煤与瓦斯突出预测研究[J]. 中国安全科学报, 2013, 23(4):45-50. ZHU Z J, ZHANG H W, HAN J, et al. Prediction of coal and gas outburst based on PCA-BP neural network[J]. China Safety Science Journal, 2013, 23(4):45-50.
|
[23] |
贺彦林, 王晓, 朱群雄. 基于主成分分析-改进的极限学习机方法的精对苯二甲酸醋酸含量软测量[J]. 控制理论与应用, 2015, 32(1):80-85. HE Y L, WANG X, ZHU Q X. Modeling of acetic acid content in purified terephthalic acid solvent column using principal component analysis based improved extreme learning machine[J]. Control Theory & Applications, 2015, 32(1):80-85.
|
[24] |
SHARIFI R, LANGARI R. Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models[J]. Mechanical Systems & Signal Processing, 2017, 85:638-650.
|
[25] |
Pao Y H, Philips S M, Sobajic D J. Neural-net computing and intelligent control systems[J]. International Journal of Control, 1992, 56(2):263-289.
|
[26] |
吕久旭, 吴乐南. 基于函数连接型神经网络的非线性滤波[J]. 长春工业大学学报, 2006, 27(4):305-307. LÜ J X, WU L N. Nonlinear filtering based on function connected neural network[J]. Journal of Changchun University of Technology, 2006, 27(4):305-307.
|
[27] |
叶世伟, 史忠植. 神经网络原理[M]. 北京:机械工业出版社, 2004:10-12. Ye S W, Shi Z Z. Neural Networks:a Comprehensive Foundation[M]. Beijing:China Machine Press, 2004:10-12.
|
[28] |
HE Y L, XU Y, GENG Z Q, et al. Hybrid robust model integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables[J]. ISA Transactions, 2016, 61:155-166.
|
[29] |
MOHAMMAD S O. Optimizing functional link neural network learning using modified bee colony on multi-class classifications[M]//JEONG H S, OBAIDAT M, YEN N, PARK J, ed. Advances in Computer Science and Its Applications. Lecture Notes in Electrical Engineering. Berlin:Springer, 2014:153-159.
|
[30] |
GHAZALI R, BAKAR Z A, HASSIM Y M M, et al. Functional link neural network with modified cuckoo search training algorithm for physical time series forecasting[M]//HUANG D S, BEVILACQUA V, PREMARATNE P, ed. Intelligent Computing Theory. Berlin:Springer, 2014:285-291.
|