[1] |
Li H T, Zhao Y X, Gao C G, et al. Study on deactivation of Ni/Al2O3 catalyst for liquid phase hydrogenation of crude 1,4-butanediol aqueous solution[J]. Chemical Engineering Journal, 2012, 181/182:501-507.
|
[2] |
Nadgeri J M, Telkar M M, Rode C V. Hydrogenation activity and selectivity behavior of supported palladium nanoparticles[J]. Catalysis Communications, 2008, 9(3):441-446.
|
[3] |
Tanielyan S, Schmidt S, Marin N, et al. Selective hydrogenation of 2-butyne-1, 4-diol to 1,4-butanediol over particulate Raney nickel catalysts[J]. Topics in Catalysis, 2010, 53(15):1145-1149.
|
[4] |
Zhang Q, Zhang Y, Li H T, et al. Heterogeneous CaO-ZrO2 acid-base bifunctional catalysts for vapor-phase selective dehydration of 1,4-butanediol to 3-buten-1-ol[J]. Applied Catalysis A:General, 2013, 466:233-239.
|
[5] |
SCHULZ A, WENDERLEIN H, REPPE W, et al. Production of aliphatic alcohols:US2335795[P]. 1943.
|
[6] |
王娟芸, 蒋毅, 谢建川, 等. 孔雀石催化合成1,4-丁炔二醇的研究[J]. Chinese Journal of Synthetic Chemistry, 2010, 18(B09):26-29. Wang J Y, Jiang Y, Xie J C, et al. The research on preparation of butynediol using self-made malachite[J]. Chinese Journal of Synthetic Chemistry, 2010, 18(B09):26-29.
|
[7] |
高玉明, 田恒水, 朱云峰. CuO-Bi2O3粉体催化合成1,4-丁炔二醇的研究[J]. 广东化工, 2008, 35(9):53-55. Gao Y M, Tian H S, Zhu Y F. Catalytic synthesis on 1,4-butynediol by CuO-Bi2O3 particles[J]. Guangdong Chemical Industry, 2008, 35(9):53-55.
|
[8] |
蒋健, 林深, 刘春莲. 纳米CuO/Bi2O3粉体的制备及催化性能[J]. 合成化学, 2005, 13(1):45-48. Jiang J, Lin S, Liu C L. Preparation and catalytic activity of Cu/Bi2O3 nano-particles[J]. Chinese Journal of Synthetic Chemistry, 2005, 13(1):45-48.
|
[9] |
Yang G H, Xu Y B, Su X T, et al. MCM-41 supported CuO/Bi2O3 nanoparticles as potential catalyst for 1,4-butynediol synthesis[J]. Ceramics International, 2014, 40(3):3969-3973.
|
[10] |
罗平, 赵新明, 李海侠, 等. Reppe法合成1,4-丁炔二醇EQ-201型炔化催化剂的研究[J]. 化工设计通讯, 2012, 38(5):87-93. Luo P, Zhao X M, Li H X, et al. Research of EQ-201 acetylene catalyst in Reppe synthesizing 1,4-butynediol[J]. Chemical Engineering Design Communications, 2012, 38(5):87-93.
|
[11] |
郑艳, 孙自瑾, 王永钊, 等. CuO-Bi2O3/SiO2-MgO催化剂的制备及炔化性能[J]. 分子催化, 2012, 26(3), 233-238. Zheng Y, Sun Z J, Wang Y Z, et al. Preparation of CuO-Bi2O3/SiO2-MgO catalyst and its ethynylation performance[J]. Journal of Molecular Catalysis, 2012, 26(3):233-238.
|
[12] |
王俊俊, 李海涛, 马志强, 等. 磁性CuO-Bi2O3/Fe3O4-SiO2-MgO催化剂的制备及甲醛乙炔化性能[J]. 化工学报, 2015, 66(6):2098-2104. Wang J J, Li H T, Ma Z Q, et al. Preparation of magnetic CuO-Bi2O3/Fe3O4-SiO2-MgO catalyst and its catalytic performance for formaldehyde ethynylation[J]. CIESC Journal, 2015, 66(6):2098-2104.
|
[13] |
马志强, 张鸿喜, 李海涛, 等. 核壳结构CuO-Bi2O3@meso-SiO2催化剂的制备及甲醛乙炔化性能[J]. 工业催化, 2015, 23(5):344-348. Ma Z Q, Zhang H X, Li H T, et al. Preparation of core-shell CuO-Bi2O3@meso-SiO2 catalyst and its catalytic performance for formaldehyde ethynylation[J]. Industrial Catalysis, 2015, 23(5):344-348.
|
[14] |
罗敏, 李海涛, 马志强, 等. 甲醛乙炔化反应中CuO-Bi2O3/SiO2-MgO催化剂活化过程研究[J]. 工业催化, 2014, 22(5):363-368. Luo M, Li H T, Ma Z Q, et al. Researches on activation process of CuO-Bi2O3/SiO2-MgO catalyst in formaldehyde ethynylation reaction[J]. Industrial Catalysis, 2014, 22(5):363-368.
|
[15] |
Hort E V, Piscataway N J. Ethynylation catalyst and method of production alkynols by low pressure reactions:US3920759[P]. 1975.
|
[16] |
杨国峰, 李海涛, 张鸿喜, 等. NaOH浓度对Cu2O结构及甲醛乙炔化性能的影响[J]. 分子催化, 2016, 30(6):540-546. Yang G F, Li H T, Zhang H X, et al. Effect of NaOH concentration on structure and catalytic performance of Cu2O for formaldehyde ethynylation[J]. Journal of Molecular Catalysis, 2016, 30(6):540-546.
|
[17] |
林骋, 刘明言. 铜离子掺杂二氧化钛光催化板式微反应器[J]. 化工学报, 2014, 65(11):4325-4332. LIN C, LIU M Y. Photocatalytic planar microreactor of copper ion doped titanium dioxide[J]. CIESC Journal, 2014, 65(11):4325-4332.
|
[18] |
Gao H, Liu J, Zhang J, et al. Influence of carbon and yttrium co-doping on the photocatalytic activity of mixed phase TiO2[J].Chinese Journal of Catalysis, 2017, 38:1688-1696.
|
[19] |
袁峰, 卢士香. 金红石TiO2(011)表面的理论研究进展[J]. 吉首大学学报(自然科学版), 2017, 38(4):53-58. YUAN F, LU S X. Review of theoretical research on rutile TiO2(011) surface[J]. Journal of Jishou University (Natural Science Edition), 2017, 38(4):53-58.
|
[20] |
侯静静, 赵清华, 李刚, 等. 复合半导体MoS2/Cu2O的制备及其光催化性能研究[J]. 分子催化, 2017, 31(3):258-266. HOU J J, ZHAO Q H, LI G, et al. Preparation and photocatalytic performance of composite semiconductor MoS2/Cu2O[J]. Journal of Molecular Catalysis, 2017, 31(3):258-266.
|
[21] |
CHENG S, GAO Z, KOU J, et al. Direct synthesis of isobutanol from syngas over nanosized Cu/ZnO/Al2O3 catalysts derived from hydrotalcite-like materials supported on carbon fibers[J]. Energy Fuels, 2017, 31:8572-8579
|
[22] |
LIANG Y, CHEN Z, YAO W, et al. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants[J]. Langmuir, 2017, 33:7606-7614.
|
[23] |
辜敏, 陈应龙, 吴亚珍. CuO-SiO2和Cu2O-SiO2薄膜的制备及其光学性能[J]. 无机化学学报, 2017, 33(4):576-582. GU M, CHEN Y L, WU Y Z. Preparation and optical properties of CuO-SiO2 and Cu2O-SiO2 films[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(4):576-582.
|
[24] |
杨自嵘, 彭杰庭, 韩玉琦, 等. 表面Cu2O纳米颗粒修饰高效促进γ-Bi2MoO6的可见光催化活性[J]. 物理化学学报, 2013, 29(4):813-820. YANG Z R, PENG J T, HAN Y Q, et al. Significantly improved visible light photocatalytic activity of γ-Bi2MoO6 by surface modification with Cu2O nanoparticles[J]. Acta Physico-Chimica Sinica, 2013,29(4):813-820.
|
[25] |
陈玉萍, 蒋新, 卢建刚. 微通道反应过程对铜锌催化剂微结构的影响[J]. 化工学报, 2015, 66(10):3895-3902. CHEN Y P, JIANG X, LU J G. Effects of reaction progress in microchannel on microstructure of Cu-Zn catalyst[J]. CIESC Journal, 2015, 66(10):3895-3902.
|
[26] |
李忠, 刘媛媛,郑华艳, 等. 固体酸负载CuⅠ催化剂表征及催化甲醇氧化羰基化[J]. 化工学报, 2010, 61(6):1443-1449. LI Z, LIU Y Y, ZHENG H Y, et al. Characterization and catalytic performance of CuⅠ/solid acids catalysts in oxidative carbonylation of methanol[J]. CIESC Journal, 2010, 61(6):1443-1449.
|
[27] |
王登豪, 张传彩, 朱明远, 等. 高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用[J]. 化工学报, 2017, 68(7):2739-2745. WANG D H, ZHANG C C, ZHU M Y, et al. Efficient and stable hydrogenation of dimethyl oxalate via copper-nickel catalysts[J]. CIESC Journal, 2017, 68(7):2739-2745.
|
[28] |
陈捷, 刘延, 黄磊, 等. 焙烧温度对TiO2柱撑膨润土结构、吸附及光催化性能的影响[J]. 高等学校化学学报, 2008, 29(7):1406-1411. Chen J, Liu Y, Huang L, et al. Influence of calcination temperature on structure and adsorption and photocatalytic activity of titanium oxide pillared bentonite[J]. Chemical Journal of Chinese Universities, 2008,29(7):1406-1411.
|
[29] |
Liu Y, Wang Z, Huang W. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts[J]. Applied Surface Science, 2016, 389:760-767.
|
[30] |
Wu G, Guan N, Li L. Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition[J]. Catalysis Science & Technology, 2011, 1:601-608.
|
[31] |
Chen C S, Chen T C, Chen C C, et al. Effect of Ti3+on TiO2-supported Cu catalysts used for CO oxidation[J]. Langmuir, 2012, 28:9996-10006.
|