[1] |
LUO L J, BAO S Y, MAO J F, et al. Quality prediction and quality-relevant monitoring with multilinear PLS for batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 150(Suppl. C):9-22.
|
[2] |
YACOUB F, MACGREGOR J F. Product optimization and control in the latent variable space of nonlinear PLS models[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 70(1):63-74.
|
[3] |
SOUZA F A A, ARAÚJO R, MENDES J M. Review of soft sensor methods for regression applications[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 152(Suppl. C):69-79.
|
[4] |
DARNAG R, MINAOUI B, FAKIR M. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression[J]. Arabian Journal of Chemistry, 2017, 10(Suppl. 1):S600-S608.
|
[5] |
GOLSHAN M, MACGREGOR J F, MHASKAR P. Latent variable model predictive control for trajectory tracking in batch processes:alternative modeling approaches[J]. Journal of Process Control, 2011, 21(9):1345-1358.
|
[6] |
ZHANG Y, FEARN T. A linearization method for partial least squares regression prediction uncertainty[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 140(Suppl. C):133-140.
|
[7] |
GE Z Q, SONG Z H, ZHAO L P, et al. Two-level PLS model for quality prediction of multiphase batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130(Suppl. C):29-36.
|
[8] |
GE Z Q. Quality prediction and analysis for large-scale processes based on multi-level principal component modeling strategy[J]. Control Engineering Practice, 2014, 31(Suppl. C):9-23.
|
[9] |
WANG X C, WANG P, GAO X J, et al. On-line quality prediction of batch processes using a new kernel multiway partial least squares method[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 158(Suppl. C):138-145.
|
[10] |
汤健,柴天佑,余文,等. 在线KPLS建模方法及在磨机负荷参数集成建模中的应用[J]. 自动化学报,2013,39(5):471-486. TANG J, CHAI T Y, YU W, et al. On-line KPLS algorithm with application to ensemble modeling parameters of mill load[J]. Journal of Automatica Sinica, 2013, 39(5):471-486.
|
[11] |
BIDAR B, SADEGHI J, SHAHRAKI F, et al. Data-driven soft sensor approach for online quality prediction using state dependent parameter models[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 162(Suppl. C):130-141.
|
[12] |
LU J D, YAO K, GAO F R. Process similarity and developing new process models through migration[J]. AIChE Journal, 2009, 55(9):2318-2328.
|
[13] |
LUO L K, YAO Y, GAO F R. Iterative improvement of parameter estimation for model migration by means of sequential experiments[J]. Computers & Chemical Engineering, 2015, 73:128-140.
|
[14] |
SALVADOR G M,MACGREGOR J F,THEODORA K. Product transfer between sites using Joint-Y PLS[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1):101-114.
|
[15] |
TOMBA E, FACCO P, BEZZO F, et al. Combining fundamental knowledge and latent variable techniques to transfer process monitoring models between plants[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 116(1):67-77.
|
[16] |
JIA R D, MAO Z H, WANG F L, et al. Batch-to-batch optimization of cobalt oxalate synthesis process using modifier-adaptation strategy with latent variable model[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 140(24):73-85.
|
[17] |
AUMI S, CORBETT B, CLARKE P T, et al. Data-driven model predictive quality control of batch processes[J]. AIChE Journal, 2013, 59(8):2852-2861.
|
[18] |
赵春晖,王福利,姚远,等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报,2010,36(3):366-374. ZHAO C H, WANG F L, YAO Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3):366-374.
|
[19] |
ZHAO C H. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes[J]. IEEE Transactions on Automation Science & Engineering, 2014, 11(4):983-991.
|
[20] |
郑蓉建,潘丰. 基于PLS-LSSVM的谷氨酸发酵产物浓度预测建模[J]. 化工学报, 2017, 68(3):976-983. ZHENG R J, PAN F. Prediction of product concentration in glutamate fermentation process using partial least squares and least square support vector machine[J]. CIESC Journal, 2017, 68(3):976-983.
|
[21] |
JAECKLE C M, MACGREGOR J F. Product transfer between plants using historical process data[J]. AIChE Journal, 2010, 46(10):1989-1997.
|
[22] |
NOMIKOS P, MACGREGOR J F. Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97-108.
|
[23] |
石怀涛,刘建昌,谭帅,等. 基于混合KPLS-FDA的过程监控和质量预报方法[J]. 控制与决策, 2013, 28(1):141-146. SHI H T, LIU J C, TAN S, et al. Process monitoring and quality prediction method based on hybrid KPLS-FDA[J]. Control and Decision, 2013, 28(1):141-146.
|
[24] |
JIA R D, MAO Z H, WANG F L, et al. Self-tuning final product quality control of batch processes using kernel latent variable model[J]. Chemical Engineering Research and Design, 2015, 94:119-130.
|
[25] |
刘昊知,胥布工,高福荣. 基于时序模型迁移的间歇过程监测建模方法[J]. 控制与决策,2015,30(10):1885-1889. LIU H Z, XU B G, GAO F R. Modeling method of monitoring for batch process based on time series model migration[J]. Control and Decision, 2015, 30(10):1885-1889.
|
[26] |
李康,王福利,何大阔,等. 基于数据的湿法冶金全流程操作量优化设定补偿方法[J]. 自动化学报,2017,43(6):1047-1055. LI K, WANG F L, HE D K, et al. A data-based compensation method for optimal setting of hydrometallurgical process[J]. Acta Automatica Sinica, 2017, 43(6):1047-1055.
|
[27] |
王锡昌,王普,高学金,等. 一种新的基于MKPLS的间歇过程质量预测方法[J]. 仪器仪表学报,2015,36(5):1155-1162. WANG X C, WANG P, GAO X J, et al. New quality prediction method of batch processes based on MKPLS[J]. Journal of Scientific Instrument, 2015, 36(5):1155-1162.
|
[28] |
ZHANG H Y, TIAN X M, DENG X G. Batch process monitoring based on multiway global preserving kernel slow feature analysis[J]. IEEE Access, 2017, 5(99):2696-2710.
|
[29] |
常鹏,王普,高学金. 基于统计量模式分析的T-KPLS间歇过程故障监控[J]. 化工学报,2015,66(1):265-271. CHANG P, WANG P, GAO X J. Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1):265-271
|
[30] |
JAECKLE C M, MACGREGOR J F. Industrial applications of product design through the inversion of latent variable models[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2):199-210.
|
[31] |
贾润达,毛志忠,王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报,2013,64(4):1332-1339. JIA R D, MAO Z Z, WANG F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4):1332-1339.
|