CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 1809-1818.DOI: 10.11949/j.issn.0438-1157.20171487
Previous Articles Next Articles
XU Mimi, WANG Shujuan
Received:
2017-11-07
Revised:
2018-01-09
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the National Key R&D Program (2017YFB0603301-2).
许咪咪, 王淑娟
通讯作者:
王淑娟
基金资助:
国家重点研发计划项目(2017YFB0603301-2)。
CLC Number:
XU Mimi, WANG Shujuan. Research progress in CO2 capture technology using liquid-liquid biphasic solvents[J]. CIESC Journal, 2018, 69(5): 1809-1818.
许咪咪, 王淑娟. 液-液相变溶剂捕集CO2技术研究进展[J]. 化工学报, 2018, 69(5): 1809-1818.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171487
[1] | KEITH D W. Why capture CO2 from the atmosphere?[J]. Science, 2009, 325(5948):1654. |
[2] | International Energy Agency. CO2 emissions from fuel combustion 2011:complete edition-ISBN 9789264103061[J]. SourceOECD Energy, 2011, 2011(24):i-538. |
[3] | NAUELS A. Climate change 2013:the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC, 2013:159-254. |
[4] | ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids:overview and progress[J]. Energy & Environmental Science, 2012, 5(5):6668-6681. |
[5] | BARRY H. Carbon dioxide capture from power stations[R]. IEA Report, 2001. |
[6] | RAO A B, RUBIN E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control[J]. Environmental Science & Technology, 2002, 36(20):4467-4475. |
[7] | DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7):1163-1176. |
[8] | RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture[J]. International Journal of Greenhouse Gas Control, 2016, 51:106-117. |
[9] | LIANG Z, RONGWONG W, LIU H, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015, 40:26-54. |
[10] | KENARSARI S D, YANG D, JIANG G, et al. Review of recent advances in carbon dioxide separation and capture[J]. RSC Advances, 2013, 3(45):22739-22773. |
[11] | WANG M, JOEL A S, RAMSHAW C, et al. Process intensification for post-combustion CO2 capture with chemical absorption:a critical review[J]. Applied Energy, 2015, 158:275-291. |
[12] | 郭东方, 王金意, Gabriel da Silva, 等. CO2捕集溶剂氨基酸的反应活性与机制探讨[J]. 中国电机工程学报, 2013, (32):29-33. GUO D F, WANG J Y, GABRIEL D S, et al. Reactivity and mechanism study of CO2 with amino as carbon capture solvents[J]. Proceedings of the CSEE, 2013, (32):29-33. |
[13] | PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide postcombustion capture:a novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology, 2009, 43(16):6427. |
[14] | ARSHAD M W, SOLMS N V, THOMSEN K, et al. Heat of absorption of CO2 in aqueous solutions of DEEA, MAPA and their mixture[J]. Energy Procedia, 2013, 37(37):1532-1542. |
[15] | 余景文, 王淑娟. 氨法脱碳模拟中热力学模型的比较[J]. 燃烧科学与技术, 2015, 21(5):394-402. YU J W, WANG S J. Comparison of thermodynamic models for carbon capture with aqueous ammonia[J]. Journal of Combustion Science and Technology, 2015, 21(5):394-402. |
[16] | ZHANG M, GUO Y. Process simulations of large-scale CO2 capture in coal-fired power plants using aqueous ammonia solution[J]. International Journal of Greenhouse Gas Control, 2013, 16(10):61-71. |
[17] | YU H, XIANG Q, FANG M, et al. Promoted CO2 absorption in aqueous ammonia[J]. Greenhouse Gases Science & Technology, 2012, 2(3):200-208. |
[18] | YU J, WANG S, YU H. Experimental studies and rate-based simulations of CO2 absorption with aqueous ammonia and piperazine blended solutions[J]. International Journal of Greenhouse Gas Control, 2016, 50:135-146. |
[19] | 申淑锋, 冯晓霞, 赵瑞红. 活化碳酸钾溶液吸收CO2的动力学研究[J]. 高校化学工程学报, 2013, (5):903-909. SHEN S F, FENG X X, ZHAO R H. Kinetics of CO2 absorption by promoted aqueous potassium carbonate solution[J]. Journal of Chemical Engineering of Chinese Universities, 2013, (5):903-909. |
[20] | KHODAYARI A. Experimental and theoretical study of carbon dioxide absorption into potassium carbonate solution promoted with enzyme[D]. University of Illinois at Urbana-Champaign, 2010. |
[21] | ROCHELLE G T, CULLINANE J T, HILLIARD M, et al. CO2 capture by absorption with potassium carbonate[R]. Office of Scientific & Technical Information Technical Reports, 2005. |
[22] | SANYAL D, VASISHTHA N, SARAF D N. Modeling of carbon dioxide absorber using hot carbonate process[J]. Industrial & Engineering Chemistry Research, 1988, 27(11):2149-2156. |
[23] | ARONU U E, HESSEN E T, HAUG-WARBERG T, et al. Vapor-liquid equilibrium in amino acid salt system:experiments and modeling[J]. Chemical Engineering Science, 2011, 66(10):2191-2198. |
[24] | SONG H J, PARK S, KIM H, et al. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions[J]. International Journal of Greenhouse Gas Control, 2012, 11(6):64-72. |
[25] | ERGA O, JULIUSSEN O, LIDAL H. Carbon dioxide recovery by means of aqueous amines[J]. Energy Conversion & Management, 1995, 36(6-9):387-392. |
[26] | MAJCHROWICZ M E, BRILMAN D W F, GROENEVELD M J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases[J]. Energy Procedia, 2009, 1(1):979-984. |
[27] | WASSERSCHEID P. Ionic Liquids in Synthesis[M]. Wiley-VCH, 2003:25-26. |
[28] | WELTON T. ChemInform abstract:room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. ChemInform, 1999, 30(46). DOI:10.1002/chin.199946295. |
[29] | PINTO D D D, KNUUTILA H, FYTIANOS G, et al. CO2 post combustion capture with a phase change solvent. Pilot plant campaign[J]. International Journal of Greenhouse Gas Control, 2014, 31:153-164. |
[30] | 张政, 刘彪, 覃显业, 等. 相变溶剂吸收CO2研究进展[J]. 材料导报, 2014, 28(21):94-99. ZHANG Z, LIU B, QIN X Y, et al. Progress in CO2 capture using phase changing solvents.[J]. Materials Review, 2014, 28(21):94-99. |
[31] | 沈超, 李瑶瑶, 刘颖颖, 等. DMBA-DEEA-水三元吸收剂的CO2吸收解吸特性[J]. 现代化工, 2017, (6):141-145. SHEN C, LI Y Y, LIU Y Y, et al. Absorption and desorption performances of DMBA-DEEA-water against CO2[J]. Modern Chemical Industry, 2017, (6):141-145. |
[32] | TAN Y H. Study of CO2-absorption into thermomorphic lipophilic amine solvents[D]. Australia:der Technischen Universitat Dortmund, 2010. |
[33] | XU Z, WANG S, LIU J, et al. Solvents with low critical solution temperature for CO2 capture[J]. Energy Procedia, 2012, 23(2):64-71. |
[34] | ZHANG W, CUI C, MAO M, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195:316-323. |
[35] | 徐志成. 1, 4丁二胺/N, N-二乙基乙醇胺体系吸收二氧化碳的研究[D]. 北京:清华大学, 2014. XU Z C. Absorption of CO2 with aqueous BEA/DEEA blend system[D]. Beijing:Tsinghua University, 2014. |
[36] | ZHANG X H. Studies on multiphase CO2 capture systems[D]. Dortmund:TU Dortmund University, 2007. |
[37] | ZHANG J, AGAR D W, ZHANG X, et al. CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration[J]. Energy Procedia, 2011, 4(1):67-74. |
[38] | ZHANG J, QIAO Y, AGAR D W. Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture[J]. Energy Procedia, 2012, 23(2):92-101. |
[39] | ZHANG J, QIAO Y, AGAR D W. Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture[J]. Chemical Engineering Research & Design, 2012, 90(6):743-749. |
[40] | 汪明喜, 方梦祥, 汪桢, 等. 相变吸收剂对CO2吸收与再生特性[J]. 浙江大学学报(工学版), 2013, 47(4):662-668. WANG M X, FANG M X, WANG Z, et al. CO2 absorption and desorption by phase transition lipophilic amine solvents[J].Journal of Zhejiang University(Engineering Science), 2013, 47(4):662-668. |
[41] | 汪明喜. 基于燃煤烟气CO2捕集的相变吸收剂试验研究[D]. 杭州:浙江大学, 2013. WANG M X. Experimental study of phase transition solvents for CO2 capture from coal-fired flue gas[D]. Hangzhou:Zhejiang University, 2013. |
[42] | ZHANG J, QIAO Y, WANG W, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37:1254-1261. |
[43] | XU Z, WANG S, ZHAO B, et al. Study on potential biphasic solvents:absorption capacity, CO2 loading and reaction rate[J]. Energy Procedia, 2013, 37:494-498. |
[44] | XU Z, WANG S, CHEN C. CO2 absorption by biphasic solvents:mixtures of 1, 4-butanediamine and 2-(diethylamino)-ethanol[J]. International Journal of Greenhouse Gas Control, 2013, 16(10):107-115. |
[45] | ALEIXO M, PRIGENT M, GIBERT A, et al. Physical and chemical properties of DMXTM solvents[J]. Energy Procedia, 2011, 4(1):148-155. |
[46] | RAYNAL L, ALIX P, BOUILLON P A, et al. The DMX™ process:an original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011, 4:779-786. |
[47] | RAYNAL L, BRIOT P, DREILLARD M, et al. Evaluation of the DMX process for industrial pilot demonstration-methodology and results[J]. Energy Procedia, 2014, 63:6298-6309. |
[48] | CIFTJA A F, HARTONO A, SVENDSEN H F. Experimental study on phase change solvents in CO2 capture by NMR spectroscopy[J]. Chemical Engineering Science, 2013, 102(15):378-386. |
[49] | PINTO D D D, ZAIDY S A H, HARTONO A, et al. Evaluation of a phase change solvent for CO2 capture:absorption and desorption tests[J]. International Journal of Greenhouse Gas Control, 2014, 28(9):318-327. |
[50] | YE Q, WANG X, LU Y. Screening and evaluation of novel biphasic solvents for energy-efficient post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 39:205-214. |
[51] | ZHOU X, LIU F, LV B, et al. Evaluation of the novel biphasic solvents for CO2 capture:performance and mechanism[J]. International Journal of Greenhouse Gas Control, 2017, 60:120-128. |
[52] | LUO W, GUO D, ZHENG J, et al. CO2 absorption using biphasic solvent:blends of diethylenetriamine, sulfolane, and water[J]. International Journal of Greenhouse Gas Control, 2016, 53:141-148. |
[53] | HU L. CO2 capture from flue gas by phase transitional absorption[R]. Hampton:School of Engineering and Technology, Hampton University, 2009. |
[54] | BARZAGLI F, MANI F, PERUZZINI M. Novel water-free biphasic absorbents for efficient CO2 capture[J]. International Journal of Greenhouse Gas Control, 2017, 60:100-109. |
[55] | BARZAGLI F, LAI S, MANI F. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions[J]. ChemSusChem, 2015, 8(1):184. |
[56] | BARZAGLI F, MANI F, PERUZZINI M. A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA)[J]. Environmental Science & Technology, 2016, 50(13):7239. |
[57] | KIM Y E, PARK J H, YUN S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine-alcohol mixture[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(4):1486-1492. |
[58] | YUN S H, KIM Y E, SEONG Y H, et al. CO2 absorption of chemical phase transitional absorbents:absorption capacity and reaction mechanism[C]//Games and Graphics. 2014:5-8. |
[59] | ROGERS R D. Materials science:reflections on ionic liquids[J]. Nature, 2007, 447(7147):917-918. |
[60] | YUAN X, ZHANG S, LIU J, et al. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures[J]. Fluid Phase Equilibria, 2007, 257(2):195-200. |
[61] | ZHANG J, ZHANG S, DONG K, et al. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chemistry, 2006, 12(15):4021-4026. |
[62] | BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6):926. |
[63] | 徐令君, 王淑娟, YANG Q. 离子液体-有机胺混合两相CO2吸收剂实验研究[C]//中国工程热物理学会(燃烧学). 2016. XU L J, WANG S J, YANG Q. CO2 absorption by mixtures of[BMIM]BF4 and MEA[C]//China National Symposium on Combustion. 2016. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[9] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[10] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[11] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[12] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[13] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[14] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[15] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||