CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2594-2602.DOI: 10.11949/j.issn.0438-1157.20171496
Previous Articles Next Articles
GAO Yan, ZHAO Zhonggai, LIU Fei
Received:
2017-11-09
Revised:
2018-01-17
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (61573169) and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201502).
高岩, 赵忠盖, 刘飞
通讯作者:
刘飞
基金资助:
国家自然科学基金项目(61573169);流程工业综合自动化国家重点实验室开放课题(PAL-N201502)。
CLC Number:
GAO Yan, ZHAO Zhonggai, LIU Fei. DMFA-based multi-objective optimization for fermentation processes[J]. CIESC Journal, 2018, 69(6): 2594-2602.
高岩, 赵忠盖, 刘飞. 基于动态代谢通量分析的发酵过程多目标优化[J]. 化工学报, 2018, 69(6): 2594-2602.
[1] | DURAN-VILLALOBOS C A, LENNOX B, LAURI D. Multivariate batch to batch optimisation of fermentation processes incorporating validity constraints[J]. Journal of Process Control, 2016, 46:34-42. |
[2] | GOLDRICK S, ?TEFAN A, LOVETT D, et al. The development of an industrial-scale fed-batch fermentation simulation[J]. Journal of Biotechnology, 2015, 193:70-82. |
[3] | 李慧娟. 青霉素发酵过程建模与优化[D]. 沈阳:东北大学, 2010. LI H J. Modeling and optimization for the fermentation process of penicillin[D]. Shenyang:Northeastern University, 2010. |
[4] | WU J, WANG J, YU T, et al. An approach to continuous approximation of Pareto front using geometric support vector regression for multi-objective optimization of fermentation process[J]. Chinese Journal of Chemical Engineering, 2014, 22(10):1131-1140. |
[5] | ZHU Y, YUAN J. A new parameter optimization algorithm of penicillin fermentation model[C]//International Conference on Transportation, Mechanical, and Electrical Engineering. IEEE, 2011:1725-1728. |
[6] | CORTASSA S, CACERES V, BELL L N, et al. From metabolomics to fluxomics:a computational procedure to translate metabolite profiles into metabolic fluxes[J]. Biophysical Journal, 2015, 108(1):163-172. |
[7] | STEPHANOPOULOS G. Metabolic fluxes and metabolic engineering[J]. Metabolic Engineering, 1999, 1(1):1-11. |
[8] | LEE S Y, PARK J M, KIM T Y. Application of metabolic flux analysis in metabolic engineering[J]. Methods in Enzymology, 2011, 498:67. |
[9] | 何宁, 李寅, 陈坚. 新型生物絮凝剂REA-11的代谢模型建立与代谢网络分析[J]. 化工学报, 2005, 56(4):681-688. HE N, LI Y, CHEN J. Metabolic network modeling and metabolic flux analysis of production of novel bioflocculant REA-11[J]. Journal of Chemical Industry & Engineering(China), 2005, 56(4):681-688. |
[10] | GAO H J, DU G C, CHEN J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus[J]. World Journal of Microbiology & Biotechnology, 2007, 22(11):11-11. |
[11] | FERNANDES S, BASTIN G, WOUWER A V. Metabolic flux analysis of hybridoma cells:underdetermined network and influence of batch and perfusion operating modes[J]. IFAC-PapersOnLine, 2015, 48(1):464-469. |
[12] | VALLINO J J, STEPHANOPOULOS G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction[J]. Biotechnology & Bioengineering, 2000, 67(6):872-885. |
[13] | VERCAMMEN D, LOGIST F, IMPE J V. Online moving horizon estimation of fluxes in metabolic reaction networks[J]. Journal of Process Control, 2016, 37(6):1-20. |
[14] | TAKIGUCHI N, SHIMIZU H, SHIOVA S. An on-line physiological state recognition system for the lysine fermentation process based on a metabolic reaction model[J]. Biotechnology & Bioengineering, 1997, 55(1):170. |
[15] | LEE J S, NISHIKAWA T, MOTTER A E. Why optimal states recruit fewer reactions in metabolic networks[J]. Discrete & Continuous Dynamical Systems-Series A (DCDS-A), 2017, 32(8):2937-2950. |
[16] | VARMA A, BOESCH B W, PALSSON B O. Biochemical production capabilities of Escherichia coli[J]. Biotechnology & Bioengineering, 1993, 42(1):59. |
[17] | HOQUE M A, SIDDIQUEE K A Z, SHIMIZU K. Metabolic control analysis of gene-knockout Escherichia coli, based on the inverse flux analysis with experimental verification[J]. Biochemical Engineering Journal, 2004, 19(1):53-59. |
[18] | MARTINS C P R, SAUTER T, PFAU T. Constraint based modeling going multicellular[J]. Frontiers in Molecular Biosciences, 2016, 3(4):3. |
[19] | KAUFFMAN K J, PRAKASH P, EDWARDS J S. Advances in flux balance analysis[J]. Current Opinion in Biotechnology, 2003, 14(5):491-496. |
[20] | TAI M, STEPHANOPOULOS G N. Metabolic engineering:enabling technology for biofuels production[J]. Metabolic Engineering, 2008, 10(6):293-294. |
[21] | LEIGHTY R W, ANTONIEWICZ M R. Dynamic metabolic flux analysis (DMFA):a framework for determining fluxes at metabolic non-steady state[J]. Metabolic Engineering, 2011, 13(6):745-755. |
[22] | MARTINEZ V S, BUCHSTEINER M, GRAY P, et al. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism[J]. Metabolic Engineering Communications, 2015, 2:46-57. |
[23] | PRAUßE M T E, SCHÄUBLE S, GUTHKE R, et al. Computing the various pathways of penicillin synthesis and their molar yields[J]. Biotechnology & Bioengineering, 2016, 113(1):173-181. |
[24] | JORGENSEN H, NIELSEN J, VILLADSEN J, et al. Metabolic flux distributions in penicillium chrysogenum during fed-batch cultivations[J]. Biotechnology & Bioengineering, 1995, 46(2):117-131. |
[25] | KNIGHT J T, ZAHRADKA F T, SINGER D J, et al. Multiobjective particle swarm optimization of a planing craft with uncertainty[J]. Journal of Ship Production & Design, 2017, 30(4):194-200. |
[26] | KENNEDY J, EBERHART R. Particle Swarm Optimization[M]. New York:Springer, 2011. |
[27] | ANOTONIEWICZ M R. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks[J]. Current Opinion Biotechnology, 2013, 24(6):973-978. |
[28] | VARMA A, PALSSON B O. Metabolic flux balancing:basic concepts, scienti?c and practical use[J]. Nature Biotechnology, 1994, 12(10):994-998. |
[29] | VERCAMMEN D, LOGIST F, IMPE J V. Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization[J]. Computer Aided Chemical Engineering, 2014, 8(1):132. |
[30] | GAO Y, ZHAO Z, LIU F. DMFA-based operation model for fermentation processes[J]. Computers & Chemical Engineering, 2018, 109:138-150. |
[31] | JIN C, ZHANG Y, BALAKRISHNAN S, et al. Local maxima in the likelihood of Gaussian mixture models:structural results and algorithmic consequences[C]//Advances in Neural Information Processing Systems. 2016:4116-4124. |
[32] | YU J, QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8585-8594. |
[33] | ZENG J, XIE L, GAO C, et al. Soft sensor development using non-Gaussian just-in-time modeling[C]//Decision and Control and European Control Conference. IEEE, 2011:5868-5873. |
[34] | KIM S, KANO M, NAKAGAWA H, et al. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection[J]. International Journal of Pharmaceutics, 2011, 421(2):269-274. |
[35] | NILASHI M, IBRAHIM O B, ITHNIN N, et al. A multi-criteria collaborative filtering recommender system for the tourism domain using expectation maximization (EM) and PCA-ANFIS[J]. Electronic Commerce Research & Applications, 2015, 14(6):542-562. |
[36] | 耿俊. 青霉素发酵过程的模型化研究[D]. 上海:上海交通大学, 2009. GENG J. Research for the modeling of penicillium chrysogenum fed-batch fermentation process[D]. Shanghai:Shanghai Jiao Tong University, 2009. |
[37] | JOHNSSON O, ANDERSSON J, LIDEN G, et al. Modelling of the oxygen level response to feed rate perturbations in an industrial scale fermentation process[J]. Process Biochemistry, 2015, 50(4):507-516. |
[38] | SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[M]//Evolutionary Programming Ⅶ. Berlin:Springer Berlin Heidelberg, 1998:591-600. |
[39] | HUANG V L, SUGANTHAN P N, LIANG J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems[J]. International Journal of Intelligent Systems, 2006, 21(2):209-226. |
[40] | 裴胜玉, 周永权. 基于Pareto最优解集的多目标粒子群优化算法[J]. 计算机工程与科学, 2010, 32(11):85-88. PEI S Y, ZHOU Y Q. A multi-objective particle swarm algorithm based on the Pareto optimization solution set[J]. Computer Engineering & Science, 2010, 32(11):85-88. |
[41] | LIU Y. Modelling of the penicillin fermentation process via LS-SVM based on Pensim simulator[J]. Chemical Reaction Engineering & Technology, 2006,22(3):252-258. |
[42] | HUANG J, JI G, ZHU Y, et al. Identification of multi-model LPV models with two scheduling variables[J]. Journal of Process Control, 2012, 22(7):1198-1208. |
[43] | SEKAR B S, SEOL E, RAJ S M, et al. Co-production of hydrogen and ethanol by pfkA -deficient Escherichia coli, with activated pentose-phosphate pathway:reduction of pyruvate accumulation[J]. Biotechnology for Biofuels, 2016, 9(1):95. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[13] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||
Full text 588
|
|
|||||
Abstract |
|
|||||