CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 2807-2814.DOI: 10.11949/j.issn.0438-1157.20171636
Previous Articles Next Articles
ZHANG Liang1, LIU Xiaochen2, LIU Guiyan2, LÜ Bo1, FENG Xudong1, LI Chun1,2
Received:
2017-12-12
Revised:
2018-04-20
Online:
2018-07-05
Published:
2018-07-05
Supported by:
supported by the National Natural Science Foundation of China (21425624, 21606019, 21506011).
张良1, 刘啸尘2, 刘桂艳2, 吕波1, 冯旭东1, 李春1,2
通讯作者:
李春
基金资助:
国家自然科学基金项目(21425624,21606019,21506011)。
CLC Number:
ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation[J]. CIESC Journal, 2018, 69(7): 2807-2814.
张良, 刘啸尘, 刘桂艳, 吕波, 冯旭东, 李春. 生物转化过程中的能量驱动与再生[J]. 化工学报, 2018, 69(7): 2807-2814.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171636
[1] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LÜ B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[2] | KOPPENOL W H, BOUNDS P L, DANG C V. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 2011, 11(5):325-337. |
[3] | HYDER F, CHASE J R, BEHAR K L, et al. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C] NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15):7612-7617. |
[4] | LAPORTE D C, KOSHLAND D E. A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle[J]. Nature, 1982, 300(5891):458-460. |
[5] | LOCHER K P. Mechanistic diversity in ATP-binding cassette (ABC) transporters[J]. Nature Structural & Molecular Biology, 2016, 23(6):487-493. |
[6] | DAWSON R J, LOCHER K P. Structure of a bacterial multidrug ABC transporter[J]. Nature, 2006, 443(7108):180-185. |
[7] | 王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J]. 植物生理学报, 2017, 53(2):133-144. WANG X Z, SUN W M, MA Y F, et al. Research progress of ABC transporters in Arabidopsis thaliana[J]. Plant Physiology Journal, 2017, 53(2):133-144. |
[8] | REES D C, JOHNSON E, LEWINSON O. ABC transporters:the power to change[J]. Nature Reviews Molecular Cell Biology, 2009, 10(3):218-227. |
[9] | HOLLENSTEIN K, DAWSON R J, LOCHER K P. Structure and mechanism of ABC transporter proteins[J]. Current Opinion in Structural Biology, 2007, 17(4):412-418. |
[10] | NAOE Y, NAKAMURA N, DOI A, et al. Crystal structure of bacterial haem importer complex in the inward-facing conformation[J]. Nature Communications, 2016, 7:13411. |
[11] | QASEM A H, PERACH M, LIVNAT-LEVANON N, et al. ATP binding and hydrolysis disrupts the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate binding protein[J]. Journal of Biological Chemistry, 2017, 292:14617-14624. |
[12] | OOMS M D, CAO T D, SARGENT E H, et al. Photon management for augmented photosynthesis[J]. Nature Communications, 2016, 7:12699. |
[13] | ROMERO E, NOVODEREZHKIN V I, GRONDELLE R V. Quantum design of photosynthesis for bio-inspired solar-energy conversion[J]. Nature, 2017, 543(7645):355-365. |
[14] | NELSON N, BENSHEM A. The complex architecture of oxygenic photosynthesis[J]. Nature Reviews Molecular Cell Biology, 2004, 5(12):971-982. |
[15] | ROSENBAUM M, AULENTA F, VILLANO M, et al. Cathodes as electron donors for microbial metabolism:Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1):324-333. |
[16] | NIELSEN L P, RISGAARDPETERSEN N, FOSSING H, et al. Electric currents couple spatially separated biogeochemical processes in marine sediment[J]. Nature, 2010, 463(7284):1071-1074. |
[17] | YAMAMOTO M, NAKAMURA R, KASAYA T, et al. Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields[J]. Angewandte Chemie, 2017, 56(21):5725-5728 |
[18] | BOSE A, GARDEL E J, VIDOUDEZ C, et al. Electron uptake by ironoxidizing phototrophic bacteria[J]. Nature Communications, 2014, 5:3391. |
[19] | HOFFMAN. Über die Pyrophosphatfraktion im Muskel[J]. Naturwissenschaften, 1929, 17(31):624-625. |
[20] | ANDEXER J N, RICHTER M. Emerging enzymes for ATP regeneration in biocatalytic processes[J]. Chembiochem A European Journal of Chemical Biology, 2015, 16(3):380-386. |
[21] | CRANS D C, KAZLAUSKAS R J, HIRSCHBEIN B L, et al. Enzymatic regeneration of adenosine 5'-triphosphate:acetyl phosphate, phosphoenolpyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-α-D-ribosyl pyrophosphate, uridine-5'-diphosphoglucose[J]. Methods in Enzymology, 1987, 136:263-280. |
[22] | MENG Q, ZHANG Y, JU X, et al. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis[J]. Journal of Biotechnology, 2016, 226:8-13. |
[23] | AN C, ZHAO L, WEI Z, et al. Chemoenzymatic synthesis of 3'-phosphoadenosine-5'-phosphosulfate coupling with an ATP regeneration system[J]. Applied Microbiology & Biotechnology, 2017, 101(20):1-10. |
[24] | WU X, KOBORI H, ORITA I, et al. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+[J]. Biotechnology & Bioengineering, 2012, 109(1):53-62. |
[25] | 黄志华, 刘铭, 王宝光, 等. 甲酸脱氢酶用于辅酶NADH再生的研究进展[J]. 过程工程学报, 2006, 6(6):1011-1016. HUANG Z H, LIU M, WANG B G, et al. Formate dehydrogenase and its application in cofactor NADH regeneration[J]. The Chinese Journal of Process Engineering, 2006, 6(6):1011-1016. |
[26] | ZHANG Y, HUANG Z, DU C, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol[J]. Metabolic Engineering, 2009, 11(2):101-106. |
[27] | NG C Y, FARASAT I, MARANAS C D, et al. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration[J]. Metabolic Engineering, 2015, 29:86-96. |
[28] | YING H, HOSSAIN G S, LI J, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids[J]. Biotechnology & Bioengineering, 2017, 114(9):1928-1936. |
[29] | WIEDERSCHAIN G Y. Glycobiology:progress, problems, and perspectives[J]. Biochemistry Biokhimiia, 2013, 78(7):679-696. |
[30] | ZHANG X, WANG Y. Glycosylation quality control by the Golgi structure[J]. Journal of Molecular Biology, 2016, 428(16):3183-3193. |
[31] | RAI A, UMASHANKAR S, RAI M, et al. Coordinate regulation of metabolites glycosylation and stress hormones biosynthesis by TT8 in arabidopsis[J]. Plant Physiology, 2016, 171(4):2499-2515. |
[32] | LIANG D, LIU J, WU H, et al. ChemInform abstract:glycosyltransferases:mechanisms and applications in natural product development[J]. Chemical Society Reviews, 2015, 44(22):8350-8374. |
[33] | DE B F, MAERTENS J, BEAUPREZ J, et al. Biotechnological advances in UDP-sugar based glycosylation of small molecules[J]. Biotechnology Advances, 2015, 33(2):288-302. |
[34] | NEUFELD E F, HASSID W Z. Biosynthesis of saccharides from glycopyranosyl esters of nucleotides ("sugar nucleotides")[J]. Advances in Carbohydrate Chemistry, 1963, 18(12):309-356. |
[35] | SCHMÖLZER K, GUTMANN A, DIRICKS M, et al. Sucrose synthase:a unique glycosyltransferase for biocatalytic glycosylation process development[J]. Biotechnology Advances, 2015, 34(2):88-111. |
[36] | JUNG S C, KIM W, PARK S C, et al. Two ginseng UDPglycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant & Cell Physiology, 2014, 55(12):2177-2188. |
[37] | SHIBUYA M, NISHIMURA K, YASUYAMA N, et al. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max[J]. FEBS Letters, 2010, 584(11):2258-2264. |
[38] | SCHMÖLZER K, LEMMERER M, GUTMANN A, et al. Integrated process design for biocatalytic synthesis by a Leloir glycosyltransferase:UDP-glucose production with sucrose synthase[J]. Biotechnology & Bioengineering, 2017, 114(4):924-928. |
[39] | HUANG F C, HINKELMANN J, HERMENAU A, et al. Enhanced production of β-glucosides by in-situ, UDP-glucose regeneration[J]. Journal of Biotechnology, 2016, 224:35-44. |
[40] | WANG Y, CHEN L, LI Y, et al. Efficient enzymatic production of rebaudioside A from stevioside[J]. Bioscience Biotechnology & Biochemistry, 2015, 80(1):67-73. |
[41] | LEPAK A, GUTMANN A, KULMER S T, et al. Creating a watersoluble resveratrol-based antioxidant through site-selective enzymatic glucosylation[J]. Chembiochem, 2015, 16(13):1870-1874. |
[42] | MICHLMAYR H, MALACHOVÁA, VARGA E, et al. Biochemical characterization of a recombinant UDP-glucosyltransferase from rice and enzymatic production of deoxynivalenol-3-o-β-D-glucoside[J]. Toxins, 2015, 7(7):2685-2700. |
[43] | GUTMANN A, BUNGARUANG L, WEBER H, et al. Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions[J]. Green Chemistry, 2014, 16(9):4417-4425. |
[44] | CASCHERA F, NOIREAUX V. A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system[J]. Metabolic Engineering, 2015, 27:29-37. |
[45] | ALISSANDRATOS A, CARON K, LOAN T D, et al. ATP recycling with cell lysate for enzyme-catalyzed chemical synthesis, protein expression and PCR[J]. ACS Chemical Biology, 2016, 11(12):3289-3293. |
[46] | KIM J E, ZHANG Y P. Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized twoenzyme cascade[J]. Biotechnology & Bioengineering, 2016, 113(2):275-282. |
[47] | NAM D H, PARK C B. Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis[J]. Chembiochem A European Journal of Chemical Biology, 2012, 13(9):1278-1282. |
[48] | CHOI W S, LEE S H, KO J W, et al. Human urine-fueled light-driven NADH regeneration for redox biocatalysis[J]. Chemsuschem, 2016, 9(13):1559-1564. |
[49] | REEVE H A, LAUTERBACH L, LENZ O, et al. Enzyme-modified particles for selective biocatalytic hydrogenation by hydrogen-driven NADH recycling[J]. Chemcatchem, 2015, 7(21):3480-3487. |
[50] | FU J, YANG Y R, JOHNSON-BUCK A, et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm[J]. Nature Nanotechnology, 2014, 9(7):531-536. |
[51] | SHAO J, HAYASHI T, WANG P G. Enhanced production of alphagalactosyl epitopes by metabolically engineered Pichia pastoris[J]. Applied & Environmental Microbiology, 2003, 69(9):5238-5242. |
[52] | ENGELS L, HENZE M, HUMMEL W, et al. Enzyme module systems for the synthesis of uridine 5'-diphospho-α-D-glucuronic acid and nonsulfated human natural killer cell-1(hnk-1) epitope[J]. Advanced Synthesis & Catalysis, 2015, 357(8):1751-1762. |
[53] | CHUNG S K, RYU S I, LEE S B. Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii:regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose[J]. Bioresource Technology, 2012, 110(110):423-429. |
[54] | WEYLER C, HEINZLE E. Multistep synthesis of UDP-glucose using tailored, permeabilized cells of E. coli[J]. Applied Biochemistry & Biotechnology, 2015, 175(8):1-8. |
[55] | LI L N, KONG J Q. Transcriptome-wide identification of sucrose synthase genes in Ornithogalum caudatum[J]. RSC Advances, 2016, 6(23):18778-18792. |
[56] | RUPPRATH C, KOPP M, HIRTZ D, et al. An enzyme module system for in situ regeneration of deoxythymidine 5'-diphosphate (DTDP)-activated deoxy sugars[J]. Advanced Synthesis & Catalysis, 2010, 349(8/9):1489-1496. |
[57] | DIRICKS M, GUTMANN A, DEBACKER S, et al. Sequence determinants of nucleotide binding in Sucrose Synthase:improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues[J]. Protein Engineering Design & Selection, 2016, 30(3):143-150. |
[58] | NIELSEN J. Yeast cell factories on the horizon[J]. Science, 2015, 349(6252):1050-1051. |
[59] | WANG Y, YIN J, CHEN G Q. Polyhydroxyalkanoates, challenges and opportunities[J]. Current Opinion in Biotechnology, 2014, 30(30):59-65. |
[60] | CHOI S Y, PARK S J, KIM W J, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli[J]. Nature Biotechnology, 2016, 34(4):435-440. |
[61] | FORSTER A C, CHURCH G M. Towards synthesis of a minimal cell[J]. Molecular Systems Biology, 2006, 2(1):45-45. |
[62] | GIBSON D G, VENTER J C. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987):52-56. |
[63] | YU T, ZHOU Y J, WENNING L, et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acidderived chemicals[J]. Nature Communications, 2017, 8:15587. |
[64] | ZHOU Y J, BUIJS N A, ZHU Z, et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories[J]. Nature Communications, 2016, 7:11709. |
[65] | 许可, 吕波, 李春. 无细胞的合成生物技术--多酶催化与生物合成[J]. 中国科学:化学, 2015, 45(5):429-437 XU K, LÜ B, LI C. Cell-free synthetic biotechnology-multi-enzyme catalysis and biosynthesis[J]. Scientia Sinica:Chimica, 2015, 45(5):429-437. |
[66] | ZHANG Y H P, MYUNG S, YOU C, et al. Toward low-cost biomanufacturing through in vitro synthetic biology:bottom-up design[J]. Journal of Materials Chemistry, 2011, 21(47):18877-18886. |
[67] | ZHANG Y H P. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations:challenges and opportunities[J]. Biotechnology & Bioengineering, 2010, 105(4):663-677. |
[68] | GUTMANN A, NIDETZKY B. Unlocking the potential of leloir glycosyltransferases for applied biocatalysis:efficient synthesis of uridine 5'-diphosphate-glucose by sucrose synthase[J]. Advanced Synthesis & Catalysis, 2016, 358(22):3600-3609. |
[69] | GUTMANN A, LEPAK A, DIRICKS M, et al. Glycosyltransferase cascades for natural product glycosylation:use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP[J]. Biotechnology Journal, 2017, 12(7):1600557. |
[70] | YOU C, ZHANG Y H P. Biomanufacturing by in vitro biosystems containing complex enzyme mixtures[J]. Process Biochemistry, 2016, 52:106-114. |
[71] | ZHANG Y H P. What is vital (and not vital) to advance economicallycompetitive biofuels production[J]. Process Biochemistry, 2011, 46(11):2091-2110. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[6] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[7] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[8] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[9] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[10] | Jiachen SUN, Wentao SUN, Hui SUN, Bo LYU, Chun LI. Licorice flavone synthase Ⅱ catalyzes liquiritigenin to specifically synthesize 7,4′-dihydroxyflavone [J]. CIESC Journal, 2022, 73(7): 3202-3211. |
[11] | Lin WANG, Qian FU, Shuai XIAO, Zhuo LI, Jun LI, Liang ZHANG, Xun ZHU, Qiang LIAO. High-efficient visible light responsive microbial photoelectrochemical system for CO2 reduction to CH4 [J]. CIESC Journal, 2022, 73(2): 887-893. |
[12] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[13] | Wei SONG, Jinhui WANG, Guipeng HU, Xiulai CHEN, Liming LIU, Jing WU. Cascade catalysis for the synthesis of (R)-β-tyrosine [J]. CIESC Journal, 2022, 73(1): 352-361. |
[14] | DUAN Lingxuan, YAO Guangxiao, JIANG Liang, WANG Shizhen. Genome mining of organic solvent tolerant amino acid dehydrogenase for biosynthesis of unnatural amino acids in non-aqueous system [J]. CIESC Journal, 2021, 72(7): 3757-3767. |
[15] | YANG Ruixiong, ZHENG Xin, LU Tao, ZHAO Yuze, YANG Qinghua, LU Yinghua, HE Ning, LING Xueping. Effects of substitution of ER domains on the synthesis of eicosapentaenoic acid in Schizochytrium limacinum SR21 [J]. CIESC Journal, 2021, 72(7): 3768-3779. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||