[1] |
付国忠, 陈超. 我国天然气供需现状及煤制天然气工艺技术和经济性分析[J]. 中外能源, 2010, 15(6):28-34. FU G Z, CHEN C. The present situation of natural gas supply and demand in China and analysis of technology and economy of coal natural gas[J]. China Foreign Energy, 2010, 15(6):28-34.
|
[2] |
HUANG J P. Industry energy use and structural change:a case study of the People's Republic of China[J]. Energy Economics, 1993, 15(2):131-136.
|
[3] |
WU Q S, CHENG J H, WANG H. Change of energy consumption with the process of industrialization in China[J]. China Industrial Economy, 2005, 4:30-37.
|
[4] |
LIU Z, GONG H, YU L. SNG development in China[J]. Coal Chemical Industry, 2009, 2:1-5.
|
[5] |
YANG C J, JACKSON R B. China's synthetic natural gas revolution[J]. Nature Climate Change, 2013, 3(10):852-854.
|
[6] |
WANG M H, LI Z, MA L W. Technical and economic analysis on pithead coal to substitute natural gas system and its developing route in China[J]. Modern Chemical Industry, 2008, 28(3):13-16.
|
[7] |
王海洋. 钼基耐硫甲烷化催化剂制备及性能研究[D]. 天津:天津大学, 2013. WANG H Y. Study on preparation and properties of molybdenum based methanation catalyst[D]. Tianjin:Tianjin University, 2013.
|
[8] |
ROSTRUP-NIELSEN J R, CHRISTIANSEN L J. Concepts in Syngas Manufacture[M]. London:Imperial College Press, 2011.
|
[9] |
DEVIANTO H, SIMONETTI E, MCPHAIL S J, et al. Electrochemical impedance study of the poisoning behaviour of Ni-based anodes at low concentrations of H2S in an MCFC[J]. International Journal of Hydrogen Energy, 2012, 37(24):19312-19318.
|
[10] |
ROSTRUP-NIRLSEN J R, PEDERSEN K. Sulfur poisoning of Bondouard and methanation reactions on nickel catalysts[J]. Chemischer Informationsdienst, 1979, 59(3):395-404.
|
[11] |
李超帅. 焦炉煤气合成天然气工艺分析[J]. 煤炭加工与综合利用, 2014, 36(4):36-38. LI C S. Analysis of synthesis of natural gas by coke oven gas[J]. Coal Processing & Comprehensive Utilization, 2014, 36(4):36-38.
|
[12] |
CZEKAJ I, STRUIS R, WAMBACH J, et al. Sulphur poisoning of Ni catalysts used in the SNG production from biomass:computational studies[J]. Catalysis Today, 2011, 176(1):429-432.
|
[13] |
YUAN C, NAN Y, WANG X, et al. The SiO2 supported bimetallic Ni-Ru particles:a good sulfur-tolerant catalyst for methanation reaction[J]. Chemical Engineering Journal, 2015, 260:1-10.
|
[14] |
BARTHOLOMEW C H, WEATHERBEE G D, JARVI G A. Sulfur poisoning of nickel methanation catalysts(Ⅰ):In situ deactivation by H2S of nickel and nickel bimetallics[J]. Journal of Catalysis, 1979, 60(2):257-269.
|
[15] |
田大勇, 杨霞, 秦绍东, 等. 载体及助剂对镍基甲烷化催化剂稳定性的影响[J]. 化工进展, 2012, 31(S1):229-231. TIAN D Y, YANG X, QIN S D, et al. Effects of carriers and auxiliaries on the stability of nickel based methanation catalysts[J]. Chemical Industry and Engineering Progress, 2012, 31(S1):229-231.
|
[16] |
LUO L T, LIS J, DENG G F. Effect of samarium on Ni/sepiolite methanation catalyst[J]. Journal of Fuel Chemistry and Technology, 2001, 29(4):302-304.
|
[17] |
贾中宝, 杨振, 熊杰明, 等. 耐硫甲烷化催化剂的研究[J]. 工业催化, 2014, 22(10):785-790. JIA Z B, YANG Z, XIONG J M, et al. Study on the sulfur tolerant methanation catalyst[J]. Industrial Catalysis, 2014, 22(10):785-790.
|
[18] |
EREKSON E J, BARTHOLOMEW C H. Sulfur poisoning of nickel methanation catalysts(Ⅱ):Effects of H2S concentration, CO and H2O partial pressures and temperature on reactivation rates[J]. Applied Catalysis, 1983, 5(3):323-336.
|
[19] |
李振花, 张晓珊, 曲江磊, 等. 制备方法对钼基耐硫甲烷化催化剂性能的影响[J]. 化工学报, 2017, 68(1):129-135. LI Z H, ZHANG X S, QU J L, et al. The effects of preparation methods on the properties of molybdenum-based sulfur resistant methanation catalyst[J]. CIESC Journal, 2017, 68(1):129-135.
|
[20] |
肖天存, 安立敦, 庞新梅. 负载型贵金属催化剂的硫中毒机理——载体的酸碱性与催化剂抗硫性能的关系[J]. 燃料化学学报, 1992, 20(3):264-271. XIAO T C, AN L D, PANG X M. Sulfur poisoning mechanism of supported noble metal catalyst relationship between acid-base properties of the carrier and sulfur resistance of catalyst[J]. Journal of Fuel Chemistry and Technology, 1992, 20(3):264-271.
|
[21] |
RYNKOWSKI J M, PARYJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-AI2O3 catalyst[J]. Applied Catalysis A:General, 1993, 106(1):73-82.
|
[22] |
GUIMON C, AUROUX A, ROMERO E, et al. Acetylene hydrogenation over Ni-Si-Al mixed oxides prepared by sol-gel technique[J]. Applied Catalysis A:General, 2003, 251(1):199-214.
|
[23] |
ZHANG J, XU H, JIN X, et al. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A:General, 2005, 290(1/2):87-96.
|
[24] |
YAO L, GALVEZ M E, HU C, et al. Mo-promoted Ni/Al2O3 catalyst for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2017, 42(37):23500-23507.
|
[25] |
高滋, 崔峻. 镍盐和氧化镍在NaY沸石中存在状态研究[J]. 物理化学学报, 1994, 10(11):992-997. GAO Z, CUI J. Nickel salt and nickel oxide in NaY zeolite[J]. Acta Physico-Chimica Sinica, 1994, 10(11):992-997.
|
[26] |
BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A:General, 2001, 212(1/2):17-60.
|
[27] |
ZHANG J J, XIN Z, MENG X, et al. Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method[J]. I&EC Research, 2013, 52:14533-14544.
|
[28] |
王瑶, 王安杰, 陈永英, 等. 以MCM-41为载体担载Co-Mo硫化物制备柴油深度加氢脱硫催化剂[J]. 石油学报石油加工, 2003, 19(5):36-41. WANG Y, WANG A J, CHEN Y Y, et al. Diesel deep hydrodesulfurization Co-Mo sulfide catalyst supported by MCM-41[J]. Petroleum Processing Section, 2003, 19(5):36-41.
|
[29] |
王玮涵, 李振花, 王保伟, 等. 耐硫甲烷化反应的研究进展[J]. 化工学报, 2015, 66(9):3357-3366. WANG W H, LI Z H, WANG B W, et al. Progress in the study of sulfur tolerance methanation reaction[J]. CIESC Journal, 2015, 66(9):3357-3366.
|
[30] |
张加赢, 辛忠, 孟鑫, 等. 基于MCM-41的镍基甲烷化催化剂活性与稳定性[J]. 化工学报, 2014, 65(1):160-168. ZHANG J Y, XIN Z, MENG X, et al. Activity and stability of nickel-based methanation catalysts supported by MCM-41[J]. CIESC Journal, 2014, 65(1):160-168.
|